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Abstract

This paper surveys approximation algorithms for various facility loca-

tion problems, mostly with detailed proofs. It resulted from lecture notes

of a course held at the University of Bonn in the winter term 2004/2005.
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1 Introduction

Many economical decision problems concern selecting and/or placing certain fa-
cilities to serve given demands efficiently. Examples are manufacturing plants,
storage facilities, depots, warehouses, libraries, fire stations, hospitals, base sta-
tions for wireless services (like TV broadcasting or mobile phone service), etc.
The problems have in common that a set of facilities, each with a certain posi-
tion, has to be chosen, and the objective is to meet the demand (of customers,
users etc.) best. Facility location problems, which occur also in less obvious
contexts, indeed have numerous applications.

The most widely studied model in discrete facility location is the so-called
Uncapacitated Facility Location Problem, also known as plant location
problem or warehouse location problem. Here we are given two finite sets of cus-
tomers and potential facilities, respectively, a fixed cost associated with opening
each single facility, and a nonnegative distance for any two elements, satisfying
the triangle inequality. The goal is to select a subset of the potential facilities
(open them) and assign each customer to a selected (open) facility, such that the
total opening cost plus the total service cost is minimum.

Although intensively studied since the 1960s (see, e.g., Stollsteimer [1963],
Balinski and Wolfe [1963], Kuehn and Hamburger [1963], Manne [1964]), no ap-
proximation algorithm was known for this problem until about ten years ago.
Then several quite different approaches succeeded to prove an approximation
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guarantee. We will present them in this paper, and also consider extensions to
more general problems, such as capacitated variants, the k-Median Problem,
and the Universal Facility Location Problem.

However, we start with the Fermat-Weber Problem, which was probably
historically the first facility location problem, studied as early as in the 17th
century. This is the simplest continuous facility location model, but there are
still questions resolved only very recently.

2 The Fermat-Weber Problem

The Fermat-Weber Problem is defined as follows: Given finitely many dis-
tinct points A1, A2, . . . , Am in R

n and positive multipliers w1, w2, . . . , wm ∈ R+,
find a point P ∈ R

n that minimizes

f(P ) =

m
∑

i=1

wi||P − Ai||.

Here ||X|| denotes the Euclidean norm of X ∈ R
n, i.e. ||(x1, . . . , xn)|| =

√

x2
1 + · · ·+ x2

n.
Special cases often considered are the ones with unit weights (wi = 1 for all i)

and with points in the plane (n = 2). So the simplest version of the problem is:
Given m points in the plane, find a point x such that the sum of the (Euclidean)
distances from x to the given points is minimum.

2.1 Geometric Solution for Three Points

We first consider the case m = 3 (with unit weights), proposed by Pierre de
Fermat (1601–1665): Given three points A, B, and C in the plane, construct a
fourth point D minimizing the sum of the distances A-D, B-D, and C-D. The
history of this problem can be sketched as follows.

Before 1640, Torricelli showed that D can be constructed as the intersection
of the circumcircles bounding the equilateral triangles on A-B, B-C and C-A.
Cavalieri (1647) showed that the three angles at D are all 120◦. Simpson (1750)
proved that the line segments from the far corner of the equilateral triangles to
the opposite corner of the triangle ABC intersect in D, too. Heinen (1834) showed
that the three Simpson-lines have equal length, as has the optimum Steiner tree.

The geometric solution by Torricelli (red) and Simpson (blue) is visualized by
the following figure. It works if and only if all angles of the triangle ABC are less
than 120◦.
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B

A

C

To prove correctness, we look at the lower equilateral (green) triangle and its
(red) circumcircle. We show (see next figure):

(a) α = β + γ = 60◦.

(b) a + b = c.

(a) shows that the constructions by Torricelli and Simpson are identical, and the
resulting point has three 120◦ angles. (b) is Heinen’s result.
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a
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α
β

γ

The proof uses elementary trigonometry only.
To prove (a), consider the angle sums of the triangles to the left and to the

right of the Simpson line c. To the left, we have (starting at α and continuing
clockwise) α + (30◦ − γ) + (30◦ + 30◦ + α + γ − 30◦) = 180◦, implying α = 60◦.
To the right, we have (γ + β) + (β − 30◦ + 30◦ + 30◦) + 30◦ + γ = 180◦, implying
γ + β = 60◦.

To prove (b), observe that cos(α + γ) = a
2r

, cos β = b
2r

, and cos γ = c
2r

. Using
cos(60◦ +γ)+cos(60◦−γ) = cos γ for γ ∈ [0◦, 30◦] (which can be seen easily from
the figure below), this implies a + b = c. 2
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1

2.2 The General Problem: Weiszfeld’s Algorithm

The general Fermat-Weber Problem has been studied by Simpson (1750),
and in the 19th century, among others, by Weber and Steiner. Weiszfeld [1937]
proposed an algorithm which we will discuss below. Bajaj [1988] proved that a
construction by ruler and compasses only is impossible.

Note that the Fermat-Weber Problem reduces to a weighted median
problem (see Korte and Vygen [2000], Section 17.1) if the given points are
collinear. Thus this special case can be solved in linear time.

(This also implies that the variant of the Fermat-Weber Problem where
we consider `1-norm instead of Euclidean norm can be solved in linear time.
Namely, in this case we can solve the problem separately for each coordinate.
This also holds if we minimize the sum of squared Euclidean distances, in which
case the problem reduces to finding the center of gravity.)

Therefore we assume henceforth that the given points are not collinear. Then
we note (cf. Kuhn [1973]):

Proposition 2.1 If the points are not collinear, then f is strictly convex.

Proof: For P, Q, A ∈ R
n with P 6= Q and 0 < λ < 1 the Cauchy-Schwarz

inequality implies

||λ(P − A) + (1 − λ)(Q − A)||2
= ||λ(P − A)||2 + 2(λ(P − A))T ((1 − λ)(Q − A)) + ||(1 − λ)(Q − A)||2
≤ ||λ(P − A)||2 + 2||λ(P − A)|| · ||(1 − λ)(Q − A)|| + ||(1 − λ)(Q − A)||2
= (λ||P − A|| + (1 − λ)||Q − A||)2

with strict inequality if and only if P , Q and A are not collinear. Hence

f(λP + (1 − λ)Q) < λf(P ) + (1 − λ)f(Q),

6



i.e. f is strictly convex. 2

Thus f is minimized at a unique point M ∈ R
n. The idea behind Weiszfeld’s

algorithm, starting anywhere and trying to converge to M , is actually very simple.
If P 6∈ A = {A1, A2, . . . , Am}, then the negative of the gradient of f at P equals

R(P ) =
m
∑

i=1

wi
Ai − P

||Ai − P || . (1)

Hence, if also M 6∈ A, then necessarily R(M) = 0 which is equivalent to

M =

∑m
i=1

wiAi

||M−Ai||
∑m

i=1
wi

||M−Ai||
. (2)

In view of (2), Weiszfeld [1937] defined T (P ) — the next iterate — for given some
P 6∈ A as

T (P ) =

∑m
i=1

wiAi

||P−Ai||
∑m

i=1
wi

||P−Ai||
(3)

and claimed that the sequence of points

P0, T (P0), T
2(P0) = T (T (P0)), T

3(P0), . . .

converges to the optimum solution M for every choice of the starting point P0.
He ignored the possibility that T s(P0) ∈ A for some s ≥ 0 in which case (3)
would not be defined.

2.3 Completing Weiszfeld’s Algorithm

Kuhn [1973] observed that it is easy to decide whether some Ai ∈ A is the
optimum point M . Setting

Rk =
m
∑

i=1,i6=k

wi
Ai − Ak

||Ai − Ak||

for 1 ≤ k ≤ m, we have

d

dt
f(Ak + tZ)

∣

∣

∣

t=0
= wk − RT

k Z

for Z ∈ R
n with ||Z|| = 1. Therefore, the direction of greatest decrease of f

at Ak is Z = Rk

||Rk|| , in which case d
dt

f(Ak + tZ)|t=0 equals wk − ||Rk||, and we
immediately obtain the following observation.
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Proposition 2.2 Ak = M if and only if wk ≥ ||Rk||. 2

Now let us assume that Ak ∈ A is not the optimum point. Proposition 2.2
implies that wk − ||Rk|| < 0 and we can really decrease the value of f by moving
from Ak a little bit in the direction Rk

||Rk|| . To make this quantitatively precise, we

consider d
dt

f
(

Ak + t Rk

||Rk||

)

for t ≥ 0. For Z = Rk

||Rk|| elementary calculus yields

d

dt
f(Ak + tZ) =

(

m
∑

i=1,i6=k

wi
Ak + tZ − Ai

||Ak + tZ − Ai||

)T

Z + wk

=
m
∑

i=1,i6=k

wi

||Ak + tZ − Ai||
(

(Ak − Ai)
T Z + t

)

+ wk

=
RT

k

||Rk||
m
∑

i=1,i6=k

wi

||Ak + tZ − Ai||
(Ak − Ai)

+t
m
∑

i=1,i6=k

wi

||Ak + tZ − Ai||
+ wk.

Defining the vector Vk(t) by the following equation

−Rk + Vk(t) =
m
∑

i=1,i6=k

wi

||Ak + tZ − Ai||
(Ak − Ai)

we obtain for t ≤ t′k with

t′k = min

{

1

2
||Ak − Ai|| : 1 ≤ i ≤ m, i 6= k

}

> 0

that

||Vk(t)|| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

m
∑

i=1,i6=k

wi

||Ak + tZ − Ai||
(Ak − Ai) + Rk

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

m
∑

i=1,i6=k

wi(Ak − Ai)

(

1

||Ak + tZ − Ai||
− 1

||Ak − Ai||

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤
m
∑

i=1,i6=k

wi||Ak − Ai||
∣

∣

∣

∣

||Ak − Ai|| − ||Ak + tZ − Ai||
||Ak + tZ − Ai||||Ak − Ai||

∣

∣

∣

∣

≤
m
∑

i=1,i6=k

wi||Ak − Ai||
∣

∣

∣

∣

t

(||Ak − Ai|| − t) ||Ak − Ai||

∣

∣

∣

∣

≤
(

m
∑

i=1,i6=k

2wi

||Ak − Ai||

)

t.

8



Similarly, for t ≤ t′k we have

m
∑

i=1,i6=k

wi

||Ak + tZ − Ai||
≤

m
∑

i=1,i6=k

wi

||Ak − Ai|| − t

≤
m
∑

i=1,i6=k

2wi

||Ak − Ai||
.

Putting everything together, we obtain

d

dt
f

(

Ak + t
Rk

||Rk||

)

≤ RT
k

||Rk||
(−Rk + Vk(t)) +

(

m
∑

i=1,i6=k

2wi

||Ak − Ai||

)

t + wk

≤ wk − ||Rk|| + ||Vk(t)|| +
(

m
∑

i=1,i6=k

2wi

||Ak − Ai||

)

t

≤ wk − ||Rk|| +
(

m
∑

i=1,i6=k

4wi

||Ak − Ai||

)

t.

If we define

tk = max















0, min















t′k,
||Rk|| − wk
m
∑

i=1,i6=k

4wi

||Ak−Ai||





























for all 1 ≤ k ≤ m, then Proposition 2.2 together with the above estimates and
the mean value theorem imply the following lemma.

Lemma 2.3 Using the above notation, tk = 0 for some 1 ≤ i ≤ k if and only if
Ak = M . Furthermore,

f(Ak) > f

(

Ak + tk
Rk

||Rk||

)

for all Ak ∈ A with Ak 6= M . 2

In view of Lemma 2.3, Rautenbach et al. [2004] proposed the following (non-
continuous) extension T ∗ of T to R

n:

T ∗(P ) =

{

T (P ) , P ∈ R
n \ A

Ak + tk
Rk

||Rk|| , P = Ak, 1 ≤ k ≤ m.
(4)

We will show that the sequence P0, T
∗(P0), T

∗(T ∗(P0)), . . . converges to the
optimum solution M for every point P0 ∈ R

n.
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2.4 Proving Convergence

We start with some simple observations:

Lemma 2.4 Let P ∈ R
n.

(i) T ∗(P ) = P if and only if P = M .

(ii) If T ∗(P ) 6= P , then f(T ∗(P )) < f(P ).

Proof: Part (i) is trivial in view of the definition of T ∗, (1), (2), (3), Lemma
2.3 and the strict convexity of f . For P ∈ A, part (ii) follows immediately from
Lemma 2.3.

Hence it remains to prove part (ii) for P 6∈ A. Clearly, T ∗(P ) = T (P ) is the
unique minimum of the strictly convex function

gP (Q) =

m
∑

i=1

wi||Q − Ai||2
||P − Ai||

which implies gP (T (P )) < gP (P ). Now, gP (P ) = f(P ) and

gP (T (P )) =
m
∑

i=1

wi||T (P )− Ai||2
||P − Ai||

=

m
∑

i=1

wi ((||T (P ) − Ai|| − ||P − Ai||) + ||P − Ai||)2
||P − Ai||

=
m
∑

i=1

wi (||T (P ) − Ai|| − ||P − Ai||)2
||P − Ai||

+ 2(f(T (P ))− f(P )) + f(P )

≥ 2f(T (P )) − f(P ).

Combining these (in)equalities implies f(T (P )) < f(P ) and the proof is complete.
2

Lemma 2.5 limP→Ak
P 6=Ak

||T ∗(P )−Ak||
||P−Ak|| = ||Rk||

wk
for k = 1, . . . , m.

Proof:

lim
P→Ak
P 6=Ak

||T ∗(P ) − Ak||
||P − Ak||

= lim
P→Ak
P /∈A

||T (P ) − Ak||
||P − Ak||

= lim
P→Ak
P 6=Ak

∥

∥

∥

∥

Pm
i=1

wiAi
||P−Ai||

Pm
i=1

wi
||P−Ai||

− Ak

∥

∥

∥

∥

||P − Ak||

= lim
P→Ak
P 6=Ak

∥

∥

∥

∥

Pm
i=1

wiAi
||P−Ai||

Pm
i=1

wi
||P−Ai||

−
Pm

i=1
wiAk

||P−Ai||
Pm

i=1
wi

||P−Ai||

∥

∥

∥

∥

||P − Ak||
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= lim
P→Ak
P 6=Ak

∥

∥

∥

∑m
i=1

wi(Ai−Ak)
||P−Ai||

∥

∥

∥

∑m
i=1

wi||P−Ak||
||P−Ai||

=

lim
P→Ak
P 6=Ak

∥

∥

∥

∑m
i=1

wi(Ai−Ak)
||P−Ai||

∥

∥

∥

lim
P→Ak
P 6=Ak

∑m
i=1

wi||P−Ak||
||P−Ai||

=
||Rk||
wk 2

Thus we get:

Lemma 2.6 If Ak 6= M for some 1 ≤ k ≤ m, then there are ε, δ > 0 such that

||T ∗(P ) − Ak|| ≥
{

(1 + ε)||P − Ak|| , P ∈ R
n, 0 < ||P − Ak|| ≤ δ

δ , P = Ak.

Proof: Since Ak 6= M , Proposition 2.2 implies ||Rk||
wk

> 1. Therefore, the exis-
tence of ε and δ with the desired properties for P with ||P − Ak|| > 0 follows
from Lemma 2.5. Choosing without loss of generality δ ≤ tk and observing that
||T ∗(Ak) − Ak|| = tk > 0, by Lemma 2.3, completes the proof. 2

We can now proceed to the main convergence result, due to Rautenbach et
al. [2004]:

Theorem 2.7 If P0 ∈ R
n and Pk = T ∗(Pk−1) for all k ∈ N, then limk→∞ Pk =

M .

Proof: Since lim||P ||→∞ f(P ) = ∞ and (f(Pk))k≥0 is non-negative and non-
increasing, the sequence (Pk)k≥0 is bounded and the sequence (f(Pk))k≥0 con-
verges. The main observation is expressed in the following claim.

Claim A subsequence of (Pk)k≥0 converges to a point in R
n \ (A \ {M}).

Proof of the claim: For contradiction we assume that the set A′ of all accumula-
tion points of the bounded sequence (Pk)k≥0 is a subset of A\{M}. This implies
that for every δ > 0 there are only finitely many elements of the sequence (Pk)k≥0

outside of the union
⋃

A∈A′

Uδ(A)

of open δ-neighbourhoods Uδ(A) = {Q ∈ R
n : ||Q − A|| < δ} of the elements A

in A′.
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Lemma 2.6 easily implies that |A′| ≥ 2. Now the pigeonhole principle together
with the finiteness of A′ and once again Lemma 2.6 imply the existence of two
distinct elements A1, A2 ∈ A′ and a subsequence (Pkl

)l≥0 of (Pk)k≥0 contained in
R

n \ A with

A1 = lim
l→∞

Pkl
,

A2 = lim
l→∞

T ∗(Pkl
).

Since limP→A,P 6=A T ∗(P ) = A for all A ∈ A (cf. Lemma 2.5)), this implies the
contradiction A1 = A2 and the proof of the claim is complete.

By the claim there is a convergent subsequence (Pkl
)l≥0 of (Pk)k≥0 whose limit

P = lim
l→∞

Pkl

lies outside of A \ {M} which implies that T ∗ is continuous at P .
By the convergence of (f(Pk))k≥0, we have

lim
k→∞

f(Pk) = lim
k→∞

f(T ∗(Pk)).

By the continuity of T ∗ at P , we have

lim
l→∞

T ∗(Pkl
) = T ∗(P ).

Since f is continuous

f(P ) = lim
l→∞

f(Pkl
) = lim

l→∞
f(T ∗(Pkl

)) = f(T ∗(P ))

and Lemma 2.4 implies P = T ∗(P ) = M .
Finally, the fact that (f(Pk))k≥0 converges and f is strictly convex, implies

that not just a subsequence of (Pk)k≥0 converges to M but the whole sequence
and the proof is complete. 2

A different extension of Weiszfeld’s algorithm was proposed by Vardi and
Zhang [2001]. Struzyna [2004] and Szegedy [2005] partially extended Weiszfeld’s
algorithm to a more general problem, where some vertices of a given graph are
associated with points in R

n, and the task is to find points for the other vertices in
order to minimize the total Euclidean distance of the edges of the graph. Again,
the version for `1-distances or squared Euclidean distances can be solved quite
easily by minimum-cost flows and linear algebra, respectively, but the problem is
not fully solved for Euclidean distances.

Unfortunately, Weiszfeld’s algorithm converges quite slowly. See Drezner et
al. [2002] for more information, and also for other, more difficult, continuous
facility location problems. We shall not consider them here.
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3 The Uncapacitated Facility Location Problem

The rest of this paper deals with discrete facility location problems, where the
number of possible locations is finite. The most basic problem, for which we shall
present many results, is the Uncapacitated Facility Location Problem.
It is defined as follows.

Given:

• a finite set D of customers (or clients);

• a finite set F of potential facilities;

• a fixed cost fi ∈ R+ for opening each facility i ∈ F ;

• a service cost cij ∈ R+ for each i ∈ F and j ∈ D;

we look for:

• a subset S of facilities (called open) and

• an assignment σ : D → S of customers to open facilities,

• such that the sum of facility costs and service costs

∑

i∈S

fi +
∑

j∈D
cσ(j)j

is minimum.

The problem has been studied intensively in the operations research literature.
See Cornuéjols, Nemhauser and Wolsey [1990] or Shmoys [2000] for survey papers.

We look for approximation algorithms, i.e. algorithms computing a feasible
solution for any instance such that

• the algorithm terminates after a number of steps that is bounded by a poly-
nomial in the instance size (e.g. in the number of customers and facilities).

• There is a constant k such that the cost of the computed solution does not
exceed k times the optimum cost for any instance.

k is called the approximation ratio or performance guarantee; we speak of a
k-factor approximation algorithm. If k = 1, we have an exact polynomial-time
algorithm. However, such an algorithm would imply P = NP, as the problem
contains many NP-hard problems. One of them will be discussed now. See Korte
and Vygen [2000] for more general information on approximation algorithms.
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3.1 Relation to Set Covering

The well-known Set Covering Problem is defined as follows. Given a pair
(U,S), where U is a finite set and S is a family of subsets of U with

⋃

S∈S S = U ,
and weights c : S → R+, the task is to find a set R ⊆ S with

⋃

S∈R S = U such
that the total weight

∑

R∈R c(R) is minimum.
This problem is notoriously hard. Raz and Safra [1997] proved that there

exists a constant χ > 0 such that, unless P = NP, there is no polynomial-time
algorithm that produces for each instance a solution whose cost is at most χ ln |U |
times the optimum. Feige [1998] proved that such an algorithm does not even
exist for any χ < 1 unless every problem in NP can be solved in O(nO(log log n))
time. On the other hand, a simple greedy algorithm, which iteratively picks the
set for which the ratio of weight over newly covered elements is minimum, yields
a solution whose weight is at most 1 + ln |U | times the optimum. This is a result
of Chvátal [1979]; see Theorem 16.3 of Korte and Vygen [2000].

The above negative results directly transfer to the Uncapacitated Facil-

ity Location Problem. Namely, it is easy to see that the Set Covering

Problem is a special case of the Uncapacitated Facility Location Prob-

lem: Given an instance (U,S, c) as above, define D := U , F := S, fS = c(S) for
S ∈ S, and let the service cost cSj be zero for j ∈ S ∈ S and ∞ for j ∈ U \ S.
Therefore the best we can hope for is a logarithmic approximation factor.

Conversely, let an instance of the Uncapacitated Facility Location

Problem be given. By a star we mean a pair (i, D) with i ∈ F and D ⊆ D.

The cost of a star (i, D) is fi +
∑

j∈D cij, and its effectiveness is
fi+

P

j∈D cij

|D| . Then
the Uncapacitated Facility Location Problem is a special case of the
Minimum Weight Set Cover Problem: set U := D and let S = 2D, where
c(D) is the minimum cost of a star (i, D) (i ∈ F).

However, the resulting set cover instance has exponential size, and therefore
this reduction cannot be used directly. Nevertheless we can apply the greedy
algorithm for set covering without generating the instance explicitly, as proposed
by Hochbaum [1982]:

Namely, in each step, we have to find a most effective star, open the corre-
sponding facility and henceforth disregard all customers in this star. Although
there are exponentially many stars, it is easy to find a most effective one as it
suffices to consider stars (i, Di

k) for i ∈ F and k ∈ {1, . . . , |D|}, where Di
k denotes

the first k customers in a linear order with nondecreasing cij. Clearly, other stars
cannot be more effective. Hence we get an approximation ratio of 1 + ln |D| also
for the Uncapacitated Facility Location Problem. In view of Feige’s
result mentioned above, this seems to be almost best possible.
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3.2 Metric Service Costs

The previous section shows that we have to make additional assumptions in order
to obtain constant-factor approximations. The usual assumption is that service
costs stem from a metric, or equivalently satisfy

cij + ci′j + ci′j′ ≥ cij′ for all i, i′ ∈ F and j, j ′ ∈ D.

Indeed, if this condition holds, we can define cii := 0 and cii′ := minj∈D(cij +
ci′j) for i, i′ ∈ F , cjj := 0 and cjj′ := mini∈F(cij + cij′) for j, j ′ ∈ D, and cji := cij

for j ∈ D and i ∈ F , and obtain a metric c on D ∪ F . Therefore we speak of
metric service costs if the above condition is satisfied. We make this assumption
in the following sections, and will occasionally work with the metric c on D ∪F .
In many practical problems service costs are proportional to geometric distances,
or to travel times, and hence are metric.

Jain et al. [2003] showed that the performance guarantee of the above greedy
algorithm is Ω(log n/ log log n) even for metric instances, where n = |D|. In-
deed, before the paper of Shmoys, Tardos and Aardal [1997] no constant-factor
approximation algorithm was known even for metric service costs. Since then,
this has changed dramatically. The following sections show different techniques
for obtaining constant-factor approximations for the Uncapacitated Facility

Location Problem with metric service costs.
An even more restricted problem is the special case when facilities and cus-

tomers are points in the plane and service costs are the geometric distances. Here
Arora, Raghavan and Rao [1998] showed that the problem has an approximation
scheme, i.e. a k-factor approximation algorithm for any k > 1. This was improved
by Kolliopoulos and Rao [1999], but their algorithm seems to be still too slow for
practical purposes.

For general metric service costs, the approximation guarantee that can be
achieved is known to be between 1.46 (a result due to Guha und Khuller [1999]
and Sviridenko [unpublished]; see Section 4.4) and 1.52 (Mahdian, Ye und Zhang
[2002]; see Sections 4.2 and 4.3).

In the rest of this paper we assume metric service costs.

3.3 Notation

When we work with an instance of the Uncapacitated Facility Location

Problem, we assume the notation D,F , fi, cij as above. For a given instance
and a given nonempty subset X of facilities, a best assignment σ : D → X
satisfying cσ(j)j = mini∈X cij can be computed easily. Therefore we will often call
a nonempty set X ⊆ F a feasible solution, with facility cost cF (X) :=

∑

i∈X fi

and service cost cS(X) :=
∑

j∈D mini∈X cij. The task is to find a nonempty subset
X ⊆ F such that cF (X) + cS(X) is minimum. We denote the optimum by OPT.
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3.4 Linear Programming

The Uncapacitated Facility Location Problem can be formulated as an
integer linear program as follows:

minimize
∑

i∈F
fiyi +

∑

i∈F

∑

j∈D
cijxij

subject to

xij ≤ yi (i ∈ F , j ∈ D)

∑

i∈F
xij = 1 (j ∈ D)

xij ∈ {0, 1} (i ∈ F , j ∈ D)

yi ∈ {0, 1} (i ∈ F)

By relaxing the integrality constraints we get the linear program:

minimize
∑

i∈F
fiyi +

∑

i∈F

∑

j∈D
cijxij

subject to

xij ≤ yi (i ∈ F , j ∈ D)

∑

i∈F
xij = 1 (j ∈ D)

xij ≥ 0 (i ∈ F , j ∈ D)

yi ≥ 0 (i ∈ F)

(5)

This was first formulated by Balinski [1965]. The dual of this LP is:

maximize
∑

j∈D
vj

subject to

vj − wij ≤ cij (i ∈ F , j ∈ D)

∑

j∈D
wij ≤ fi (i ∈ F)

wij ≥ 0 (i ∈ F , j ∈ D)

(6)
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We will need some basic facts from LP theory. First, linear programs can
be solved in polynomial time. Second, the primal and dual LP have the same
optimum value. Hence for every feasible dual solution (v, w),

∑

j∈D vj ≤ OPT.
Moreover, primal and dual feasible solutions (x, y) and (v, w) are both optimum if
and only if they satisfy the complementary slackness conditions: xij > 0 implies
vi − wij = cij, yi > 0 implies

∑

j∈D wij = fi, and wij > 0 implies xij = yi.
In approximation algorithms, one often has approximate complementary slack-

ness: For example, if (x, y) is an integral feasible primal solution, and (v, w) is
a feasible dual solution such that yi > 0 implies fi ≤ 3

∑

j∈D wij and xij > 0
implies cij ≤ 3(vj − wij), then the cost of the solution (x, y) is

∑

i∈F fiyi +
∑

i∈F
∑

j∈D cijxij ≤ 3
∑

j∈D vj ≤ 3 OPT.
We close this section by mentioning a different integer programming formula-

tion. Here we have a 0/1-variable zS for each star S ∈ S := F × 2D. The cost of
a star S = (i, D) is c(S) = fi +

∑

j∈D cij. Then the Uncapacitated Facility

Location Problem can be formulated equivalently as:

minimize
∑

S∈S
c(S)zS

subject to
∑

S=(i,D)∈S:j∈D

zS ≥ 1 (j ∈ D)

zS ∈ {0, 1} (S ∈ S)

As above, we relax integrality conditions:

minimize
∑

S∈S
c(S)zS

subject to
∑

S=(i,D)∈S:j∈D

zS ≥ 1 (j ∈ D)

zS ≥ 0 (S ∈ S)

(7)

The dual of (7) is:

maximize
∑

j∈D
vj

subject to
∑

j∈D

vj ≤ c(S) (S = (i, D) ∈ S)

vj ≥ 0 (j ∈ D)

(8)
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Any solution z to (7) implies a solution (x, y) to (5) with the same value, by
setting yi :=

∑

S=(i,D) zS and xij :=
∑

S=(i,D),j∈D zS. Conversely, any solution
(x, y) to (5) implies a solution z to (7) with the same value by setting zS := xik

for i ∈ F , k ∈ D and S = (i, {j ∈ D : xij ≤ xik}). Thus (7) can be solved in
polynomial time despite its exponential number of variables.

The same holds for the dual LPs. For any feasible solution (v, w) to (6), v is
a feasible solution to (8). Conversely, for any feasible solution v to (8) we can
define wij := max{0, vj − cij} in order to obtain a feasible solution to (6): note
that for i ∈ F and D := {j ∈ D : vj > cij} we have

∑

j∈D
wij =

∑

j∈D
max{0, vj − cij} =

∑

j∈D

vj −
∑

j∈D

cij ≤ c(i, D) −
∑

j∈D

cij = fi.

Hence the two LP relaxations can be considered equivalent.

3.5 Rounding the LP solution

LP rounding algorithms work with integer programming formulations, solve the
LP relaxation, and round the resulting fractional solution. However, straightfor-
ward rounding does not work for facility location problems. Nevertheless Shmoys,
Tardos and Aardal [1997] obtained the first constant-factor approximation by this
technique. We now present their approach.

We first compute an optimum solution (x∗, y∗) to (5), and also an optimum
solution (v∗, w∗) to the dual (6). We shall produce an integral solution whose
cost is at most four times the cost of an optimum fractional solution.

Let G be the bipartite graph with vertex set F ∪D containing an edge {i, j}
iff x∗

ij > 0. By complementary slackness, x∗
ij > 0 implies v∗

j − w∗
ij = cij, and thus

cij ≤ v∗
j .

We assign clients to clusters iteratively as follows. In iteration k, let jk be
a customer j ∈ D not assigned yet and with v∗

j smallest. Create a new cluster
containing jk and those vertices of G that have distance 2 from jk and are not
assigned yet. Continue until all clients are assigned to clusters.

For each cluster k we choose a neighbour ik of jk with fik minimum, open ik,
and assign all clients in this cluster to ik.

Then the service cost for customer j in cluster k is at most

cikj ≤ cij + cijk
+ cikjk

≤ v∗
j + 2v∗

jk
≤ 3v∗

j ,

where i is a common neighbour of j and jk.
Finally, the facility cost fik can be bounded by

fik ≤
∑

i∈F
x∗

ijk
fi =

∑

i∈F :{i,jk}∈E(G)

x∗
ijk

fi ≤
∑

i∈F :{i,jk}∈E(G)

y∗
i fi.
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As jk and jk′ cannot have a common neighbour for k 6= k′, the total facility cost
is at most

∑

i∈F y∗
i fi.

Summing up, the total cost is 3
∑

j∈D v∗
j +

∑

i∈F y∗
i fi, which is at most four

times the LP value, and hence at most 4 OPT. We conclude:

Theorem 3.1 (Shmoys, Tardos and Aardal [1997]) The above LP rounding al-
gorithm is a 4-factor approximation algorithm. 2

Note that the facility cost of the computed solution is at most OPT, while
the service cost can be as large as 3 OPT. This raises the question whether
the performance guarantee can be improved by opening additional facilities that
reduce the service cost. This is indeed true, and we will return to this in Section
4.3.

The rounding itself can be improved quite easily, as shown by Chudak and
Shmoys [1998]: First find a solution (x, y) to (5) such that x∗

ij > 0 implies x∗
ij = y∗

i .
This can be by generating a solution to (7) as shown at the end of Section 3.4,
and duplicating facilities when transforming it back to a solution to (5).

Then assign clients to clusters as above. In cluster k, choose a neighbour ik of
jk, where i is chosen with probability x∗

ijk
, and open ik. Finally, for each facility

i that does not belong to any cluster, open it with probability y∗
i .

Clearly, the expected total facility cost is
∑

i∈F y∗
i fi. Moreover, for each cus-

tomer j, the probability that a neighbour is open is at least 1−∏i∈F :{i,j}∈E(G)(1−
y∗

i ). Since y∗
i ≥ x∗

ij and
∑

i∈F :{i,j}∈E(G) x∗
ij = 1, we have

∏

i∈F :{i,j}∈E(G)(1−y∗
i ) ≤ 1

e
.

Thus, for each j ∈ D, we have service cost at most v∗
j with probability at least

1 − 1
e
, and service cost at most 3v∗

j otherwise. Hence the total expected ser-
vice cost is

∑

j∈D v∗
j (1 + 2

e
), yielding an overall expected cost of 2 + 2

e
times the

optimum.
This can be further improved. We will need a well-known inequality (see, e.g.,

Hardy, Littlewood and Pólya [1964], Theorem 43):

Lemma 3.2 Let p1, . . . , pn, a1, . . . , an, b1, . . . , bn ≥ 0 with (ai − aj)(bi − bj) ≤ 0
for all i, j ∈ {1, . . . , n}. Then

(

n
∑

i=1

pi

)(

n
∑

i=1

piaibi

)

≤
(

n
∑

i=1

piai

)(

n
∑

i=1

pibi

)

.

Proof:
(

n
∑

i=1

pi

)(

n
∑

i=1

piaibi

)

−
(

n
∑

i=1

piai

)(

n
∑

i=1

pibi

)

=

n
∑

i=1

n
∑

j=1

pipjajbj −
n
∑

i=1

n
∑

j=1

piaipjbj

19



=
1

2

n
∑

i=1

n
∑

j=1

pipj(aibi + ajbj − aibj − ajbi)

≤ 0.
2

We now cluster in a slightly different way: In iteration k, choose jk among
the unassigned customers so that v∗

jk
+
∑

i∈F x∗
ijk

cijk
is minimum.

Then the expected service cost for j, even if no neighbour is open, can be
bounded by

v∗
j + v∗

jk
+
∑

i∈F
x∗

ijk
cijk

≤ 2v∗
j +

∑

i∈F
x∗

ijcij.

Let i1, . . . , il be the neighbours of j in G, with ci1j ≤ ci2j ≤ · · · ≤ cilj.
Applying the Lemma with pk = x∗

ikj, ak =
∏k−1

h=1(1 − x∗
ihj), and bk = cikj, the

expected service cost for j can be bounded by

l
∑

k=1

k−1
∏

h=1

(1 − x∗
ihj)x

∗
ikjcikj +

l
∏

h=1

(1 − x∗
ihj)

(

2v∗
j +

∑

i∈F
x∗

ijcij

)

=

l
∑

k=1

akpkbk + al

(

2v∗
j +

l
∑

k=1

pkbk

)

≤
(

l
∑

k=1

pkbk

)(

l
∑

k=1

pkak

)

+ al

(

2v∗
j +

l
∑

k=1

pkbk

)

.

Using
∑l

k=1 pkak + al = 1 and log al =
∑l

k=1 log(1 − x∗
ikj) ≤

∑l
k=1(−x∗

ikj) = −1
we get that the expected service cost for j is at most

(

l
∑

k=1

pkbk

)

+ 2alv
∗
j ≤

∑

i∈F
x∗

ijcij +
2

e
v∗

j .

Summing over all customers, and adding the expected total facility cost
∑

i∈F fiy
∗
i ,

the total expected cost is at most 1 + 2
e
≈ 1.736 times the optimum. This re-

sult is due to Chudak and Shmoys [1998]. They also show how to derandomize
the algorithm and obtain a deterministic algorithm with the same performance
guarantee.

Sviridenko [2002] further refined the algorithm and improved the performance
guarantee to 1.582.

Meanwhile, better performance guarantees have been obtained with simpler
and faster algorithms, which do not need a linear programming algorithm. These
will be presented in the next section.
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4 Greedy and Primal-Dual Algorithms

Although a straighforward greedy algorithm does not produce good results, constant-
factor approximations can be achieved by finding approximate primal and dual
solutions simultaneously. The algorithms in this section are much faster than LP
rounding algorithms, because they do not use a linear programming algorithm as
subroutine.

4.1 Two Primal-Dual Algorithms

The first primal-dual approimxation algorithm for the metric Uncapacitated

Facility Location Problem was due to Jain and Vazirani [2001]. It computes
feasible primal and dual solutions (to the LPs presented in Section 3.4) simulta-
neously. The primal solution is integral, and the approximation guarantee will
follow from approximate complementary slackness conditions.

Let t = 0 (t is interpreted as time), and set all dual variables to zero. With
proceeding time t, all vj are increased simultaneously, i.e. they are all equal to t
until they are frozen and then remain constant until the end. (vj can be viewed
as the price that customer j pays for being served.)

There are three types of events:

• vj = cij for some i and j, where i is not tentatively open.

Then start to increase wij at the same rate, maintaining vj − wij = cij.

(wij can be regarded as the amount that j offers to contribute to the opening
cost of facility i. At any stage wij = max{0, vj − cij}.)

• ∑j∈D wij = fi for some i.

Then tentatively open i. For all unconnected customers j ∈ D with vj ≥ cij:
connect j to i, and freeze vj and all wi′j for all i′ ∈ F .

• vj = cij for some i and j, where i is tentatively open.

Then connect j to i and freeze vj.

Several events can occur at the same time and are then processed in arbitrary
order. This continues until all customers are connected.

Now let V be the set of facilities that are tentatively open, and let E be
the set of pairs {i, i′} of distinct tentatively open facilities such that there is a
customer j with wij > 0 and wi′j > 0. Choose a maximal stable set X in the
graph (V, E). Open the facilities in X. For each customer j that is connected to
a facility i /∈ X, connect j to an open neighbour of i in (V, E).

Theorem 4.1 (Jain and Vazirani [2001]) The above primal-dual algorithm opens
a set X of facilities with 3cF (X) + cS(X) ≤ 3 OPT. In particular, the above is
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a 3-factor approximation algorithm. It can be implemented to run in O(m log m)
time, where m = |F||D|.
Proof: (v, w) constitutes a feasible dual solution, thus

∑

j∈D vj ≤ OPT. For
each open facility i, all customers j with wij > 0 are connected to i, and fi =
∑

j∈D wij. Moreover, we claim that the assignment cost for each customer j is at
most 3(vj − wi∗j), where i∗ the facility that j is assigned to.

We distinguish two cases. If ci∗j = vj −wi∗j, this is clear. Otherwise ci∗j > vj

and wi∗j = 0. Then there is a (closed) facility i with cij = vj − wij and a
customer j ′ with wij′ > 0 and wi∗j′ > 0, and hence cij′ = vj′ − wij′ < vj′ and
ci∗j′ = vj′ −wi∗j′ < vj′. Note that vj′ ≤ vj, because j ′ is connected to i∗ before j.
We conclude that ci∗j ≤ ci∗j′ + cij′ + cij ≤ 3vj.

To obtain the stated running time, we sort all cij once in advance. Next, let
t2 = min{ti2 : i ∈ Y }, where

ti2 =
1

|Ui|



fi +
∑

j∈D\U :vj>cij

(cij − vj) +
∑

j∈Ui

cij





and Ui := {j ∈ U : t ≥ cij}. We maintain t2, ti2 and |Ui| throughout. With
this information it is easy to compute the next event. The numbers |Ui|, ti2,
and possibly t2, are updated when a new customer is connected or when t = cij

for some j ∈ D. Hence there are 2m such updates overall, each of which takes
constant time. 2

The first statement of the theorem can be used to get a better performance
guarantee. Note that the factor 3 guarantee is tight only if service costs dominate.
In this case we may benefit from opening additional facilities. We show how
Section 4.3.

The primal-dual algorithm itself has been improved by Jain et al. [2003]. They
consider only the set U of unconnected customers. Each customer withdraws all
offered contributions to facility opening costs once it is connected. On the other
hand, facilities are opened once and for all when they are paid for. Let initially
be U := D. There are the following events:

• vj = cij, where j ∈ U and i is not open. Then start to increase wij at the
same rate, in order to maintain vj − wij = cij.

• ∑j∈U wij = fi. Then open i. For all j with vj ≥ cij: freeze vj and all wi′j

for all i′ (including i), and remove j from U .

• vj = cij, where j ∈ U and i is open. Then freeze vj and remove j from U .

Note that this amounts to the greedy algorithm discussed in Section 3.1, with
the only difference that facility costs of facilities that have already been chosen
in previous steps are set to zero.
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Now the total cost of the solution is clearly
∑

j∈D vj. However, (v, w) is not

a feasible dual solution anymore. But Jain et al. [2003] showed that 1
γ
v, for

γ = 1.861, is a feasible solution to (8). Hence 1
γ

∑

j∈D vj ≤ OPT, and the above
algorithm uses at most γ times this cost. We shall not prove this, as this algorithm
is outperformed by the one presented in the next section.

4.2 The Jain-Mahdian-Saberi Algorithm

A slightly modified version of the above primal-dual algorithm, due to Jain, Mah-
dian and Saberi, and published in Jain et al. [2003], has an even better perfor-
mance guarantee. Indeed, it leads to the best approximation guarantee known
today.

The idea is that connected customers can still offer a certain amount to other
facilities if they are closer and re-connecting would save service cost. The algo-
rithm proceeds as follows.

Start with U := D and time t = 0. Increase t, maintaining vj = t for all
j ∈ U . Consider the following events:

• vj = cij, where j ∈ U and i is not open. Then start to increase wij at the
same rate, in order to maintain vj − wij = cij.

• ∑j∈D wij = fi. Then open i. For all j ∈ D with wij > 0: freeze vj and set
wi′j := max{0, cij − ci′j} for all i′ ∈ F , and remove j from U .

• vj = cij, where j ∈ U and i is open. Then freeze vj and set wi′j :=
max{0, cij − ci′j} for all i′ ∈ F , and remove j from U .

This algorithm can be implemented in O(|F|2|D|) time. Clearly the total
cost of the computed solution is

∑

j∈D vj. We will find a number γ such that
∑

j∈D vj ≤ γc(S) for each star S = (i, D) (in other words: 1
γ
v is a feasible

solution to (8)). This will imply the performance ratio γ.
Consider a star S = (i, D), with |D| = d. Renumber the customers in D in

the order in which they are connected in the algorithm; w.l.o.g. D = {1, . . . , d}.
We have v1 ≤ v2 ≤ · · · ≤ vd.

Let k ∈ D. Note that k is connected at time t = vk in the algorithm, and
consider the time t = vk − ε for sufficiently small positive ε. For j = 1, . . . , k − 1
let

rj,k :=

{

ci(j,k)j if j is connected to i(j, k) ∈ F at time t
vk otherwise, i.e. if vj = vk

.

We now write down valid inequalities for these variables. First, for j =
1, . . . , d,

rj,j+1 ≥ rj,j+2 ≥ · · · ≥ rj,d (9)
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because the service cost decreases if customers are re-connected. Next, for k =
1, . . . , d,

k−1
∑

j=1

max{0, rj,k − cij} +

d
∑

l=k

max{0, vk − cil} ≤ fi, (10)

as
∑

j∈D wij at time t = vk − ε converges to the left-hand side if ε → 0. Finally,
for 1 ≤ j < k ≤ d,

vk ≤ rj,k + cij + cik, (11)

which is trivial if rj,k = vk, and otherwise follows from observing that the right-
hand side is at most ci(j,k)k due to metric service costs, and facility i(j, k) is open
at time t.

To prove a performance ratio, we consider the following optimization problem
for γF ≥ 1 and d ∈ N:

maximize

∑d
j=1 vj − γFfi
∑d

j=1 cij

subject to

vj ≤ vj+1 (1 ≤ j < d)

rj,k ≥ rj,k+1 (1 ≤ j < k < d)

rj,k + cij + cik ≥ vk (1 ≤ j < k ≤ d)

k−1
∑

j=1

max{rj,k − cij, 0} +
d
∑

l=k

max{vk − cil, 0} ≤ fi (1 ≤ k ≤ d)

∑d
j=1 cij > 0

vj, cij, fi, rj,k ≥ 0 (1 ≤ j ≤ k ≤ d)

Note that this optimization problem can be easily reformulated as a linear
program; it is often referred to as the factor-revealing LP. Its optimum values
imply performance guarantees for the Jain-Mahdian-Saberi algorithm:

Theorem 4.2 Let γF ≥ 1, and let γS be the supremum of the optimum values of
the factor-revealing LP over all d ∈ N. Let an instance be given, and let X ∗ ⊆ F
be any solution. Then the cost of the solution produced by the algorithm by Jain
et al. on this instance is at most γF cF (X∗) + γScS(X∗).

Proof: The algorithm produces numbers vj and, implicitly, rj,k for all j, k ∈
D with vj ≤ vk. For each star (i, D), the numbers fi, cij, vj, rj,k satisfy the
conditions (9), (10) and (11) and thus constitute a feasible solution of the above
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optimization problem unless
∑d

j=1 cij = 0. Hence
∑d

j=1 vj − γFfi ≤ γS

∑d
j=1 cij.

Choosing σ∗ : D → X∗ such that cσ∗(j)j = mini∈X∗ cij, and summing over all pairs
(i, {j ∈ D : σ∗(j) = i}) (i ∈ X∗), we get

∑

j∈D
vj ≤ γF

∑

i∈X∗

fi + γS

∑

j∈D
cσ∗(j)j = γF cF (X∗) + γScS(X∗).

As the solution computed by the algorithm has total cost at most
∑

j∈D vj, this
proves the theorem. 2

To apply this, we observe:

Lemma 4.3 Consider the above factor-revealing LP for some d ∈ N.

(a) For γF = 1, the optimum is at most 2.

(b) (Jain et al. [2003]) For γF = 1.61, the optimum is at most 1.61.

(c) (Mahdian, Ye and Zhang [2002]) For γF = 1.11, the optimum is at most
1.78.

Proof: Here we only prove (a). For a feasible solution we have

d

(

fi +

d
∑

j=1

cij

)

≥
d
∑

k=1

(

k−1
∑

j=1

rj,k +

d
∑

l=k

vk

)

≥
d
∑

k=1

dvk − (d − 1)

d
∑

j=1

cij,

(12)

implying that d
∑d

j=1 vj ≤ dfi + (2d − 1)
∑d

j=1 cij, i.e.
∑d

j=1 vj ≤ fi + 2
∑d

j=1 cij.
2

The proofs of (b) and (c) are quite long and technical. (a) directly implies
that 1

2
v is a feasible dual solution, and the Jain-Mahdian-Saberi algorithm is a

2-approximation. (b) implies a performance ratio of 1.61. Even better results can
be obtained by combining the Jain-Mahdian-Saberi algorithm with scaling and
greedy augmentation. This will be shown in the next section. For later use we
summarize what follows from Theorem 4.2 and Lemma 4.3:

Corollary 4.4 Let (γF , γS) ∈ {(1, 2), (1.61, 1.61), (1.11, 1.78)}. Let an instance
of the metric Uncapacitated Facility Location Problem be given, and
let X∗ ⊆ F be any solution. Then the cost of the solution produced by the Jain-
Mahdian-Saberi algorithm on this instance is at most γF cF (X∗) + γScS(X∗). 2
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4.3 Scaling and Greedy Augmentation

Many of the previous results are asymmetric in terms of facility cost and service
cost. Often the service cost is higher and could be reduced by opening addi-
tional facilities. Indeed, this can be exploited to improve several performance
guarantees.

For a solution X ⊆ F and a facility i ∈ F , we denote by gX(i) := cS(X) −
cS(X ∪ {i}). Then we have:

Proposition 4.5 Let ∅ 6= X, X∗ ⊆ F . Then
∑

i∈X∗ gX(i) ≥ cS(X) − cS(X∗).

Proof: For j ∈ D let σ(j) ∈ X such that cσ(j)j = mini∈X cij, and let σ∗(j) ∈ X∗

such that cσ∗(j)j = mini∈X∗ cij. Then gX(i) ≥ ∑

j∈D:σ∗(j)=i(cσ(j)j − cij) for all
i ∈ X∗. Summation yields the lemma. 2

In particular, there exists an i ∈ X∗ with gX(i)
fi

≥ cS(X)−cS(X∗)
cF (X∗)

. By greedy
augmentation of a set X we mean iteratively picking an element i ∈ F maximizing
gX(i)

fi
until gX(i) ≤ fi for all i ∈ F . We need the following lemma:

Lemma 4.6 (Charikar and Guha [1999]) Let ∅ 6= X, X∗ ⊆ F . Apply greedy
augmentation to X, obtaining a set Y ⊇ X. Then

cF (Y ) + cS(Y ) ≤

cF (X) + cF (X∗) ln

(

max

{

1,
cS(X) − cS(X∗)

cF (X∗)

})

+ cF (X∗) + cS(X∗).

Proof: If cS(X) ≤ cF (X∗) + cS(X∗), the above inequality evidently holds even
before augmentation (Y = X). Otherwise, let X = X0, X1, . . . , Xk be the se-
quence of augmented sets, such that k is the first index for which cS(Xk) ≤
cF (X∗) + cS(X∗). By renumbering facilities we may assume Xi \ Xi−1 = {i}
(i = 1, . . . , k). By Proposition 4.5,

cS(Xi−1) − cS(Xi)

fi
≥ cS(Xi−1) − cS(X∗)

cF (X∗)

for i = 1, . . . , k. Hence fi ≤ cF (X∗) cS(Xi−1)−cS(Xi)
cS(Xi−1)−cS(X∗)

(note that cS(Xi−1) > cS(X∗)),
and

cF (Xk) + cS(Xk) ≤ cF (X) + cF (X∗)
k
∑

i=1

cS(Xi−1) − cS(Xi)

cS(Xi−1) − cS(X∗)
+ cS(Xk).

As the right-hand side increases with increasing cS(Xk) (the derivative is 1 −
cF (X∗)

cS(Xk−1)−cS(X∗)
> 0), we may assume cS(Xk) = cF (X∗) + cS(X∗). By using
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x − 1 ≥ ln x for x > 0, we get

cF (Xk) + cS(Xk) ≤ cF (X) + cF (X∗)
k
∑

i=1

(

1 − cS(Xi) − cS(X∗)

cS(Xi−1) − cS(X∗)

)

+ cS(Xk)

≤ cF (X) − cF (X∗)
k
∑

i=1

ln
cS(Xi) − cS(X∗)

cS(Xi−1) − cS(X∗)
+ cS(Xk)

= cF (X) − cF (X∗) ln
cS(Xk) − cS(X∗)

cS(X) − cS(X∗)
+ cS(Xk)

= cF (X) + cF (X∗) ln
cS(X) − cS(X∗)

cF (X∗)
+ cF (X∗) + cS(X∗).

2

This can be used to improve several of the previous performance guarantees.
Sometimes it is good to combine greedy augmentation with scaling. We get the
following general result:

Theorem 4.7 Suppose there are positive constants β, γS, γF and an algorithm A
which, for every instance, computes a solution X such that βcF (X) + cS(X) ≤
γF cF (X∗) + γScS(X∗) for each ∅ 6= X∗ ⊆ F . Let δ ≥ 1

β
.

Then, scaling facilities by δ, applying A to the modified instance, scaling back,
and applying greedy augmentation to the original instance yields a solution of cost
at most max{γF

β
+ ln(βδ), 1 + γS−1

βδ
} times the optimum.

Proof: Let X∗ be the set of facilities of an optimum solution to the original
instance. We have βδcF (X) + cS(X) ≤ γF δcF (X∗) + γScS(X∗). If cS(X) ≤
cS(X∗) + cF (X∗), then we have βδ(cF (X) + cS(X)) ≤ γF δcF (X∗) + γScS(X∗) +
(βδ−1)(cS(X∗)+cF (X∗)), so X is a solution that costs at most max{1+ γF δ−1

βδ
, 1+

γS−1
βδ

} times the optimum. Note that 1 + γF δ−1
βδ

≤ γF

β
+ ln(βδ) as 1− 1

x
≤ ln x for

all x > 0.
Otherwise we apply greedy augmentation to X and get a solution of cost at

most

cF (X) + cF (X∗) ln
cS(X) − cS(X∗)

cF (X∗)
+ cF (X∗) + cS(X∗)

≤ cF (X) + cF (X∗) ln
(γS − 1)cS(X∗) + γF δcF (X∗) − βδcF (X)

cF (X∗)
+ cF (X∗) + cS(X∗).

The derivative of this expression with respect to cF (X) is

1 − βδcF (X∗)

(γS − 1)cS(X∗) + γF δcF (X∗) − βδcF (X)
,
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which is zero for cF (X) = γF−β
β

cF (X∗) + γS−1
βδ

cS(X∗). Hence we get a solution of
cost at most

(

γF

β
+ ln(βδ)

)

cF (X∗) +

(

1 +
γS − 1

βδ

)

cS(X∗).
2

With Corollary 4.4 we can apply this result to the Jain-Mahdian-Saberi al-
gorithm with β = γF = 1 and γS = 2: by setting δ = 1.76 we obtain an
approximation guarantee of 1.57. With β = 1, γF = 1.11 and γS = 1.78 (cf.
Corollary 4.4) we can do even better:

Corollary 4.8 (Mahdian, Ye and Zhang [2002]) Multiply all facility costs by δ =
1.504, apply the Jain-Mahdian-Saberi algorithm, scale back the facility costs, and
apply greedy augmentation. Then this algorithm has an approximation guarantee
of 1.52. 2

This is the best performance ratio that is currently known for the metric
Uncapacitated Facility Location Problem.

Theorem 4.7 can also be used to improve the performance ratio of other algo-
rithms. Applied to the Jain-Vazirani algorithm, where we have β = γS = γF = 3,
we can set δ = 0.782 and obtain a performance ratio of 1.853 (instead of 3). For
the LP rounding algorithm by Shmoys, Tardos and Aardal (Section 3.5), the pre-
requisites hold for any β and γF = γS = 3+β. By choosing β and δ appropriately
(e.g. β = 6, δ = 0.7), the performance ratio can be reduced from 4 to below 3.

In some cases, it suffices to scale facility costs before applying the algorithm:

Proposition 4.9 Suppose there are constants αF , αS, βF , βS and an algorithm
A, such that for every instance A computes a solution X such that cF (X) ≤
αF cF (X∗)+αScS(X∗) and cS(X) ≤ βF cF (X∗)+βScS(X∗) for each ∅ 6= X∗ ⊆ F .

Let δ :=
βS−αF +

√
(βS−αF )2+4βF αS

2βF
= 2αS

αF−βS+
√

(βS−αF )2+4βF αS

. Then, multiply-

ing all facility costs by δ and applying A to the modified instance yields a solution

of cost at most
βS+αF +

√
(βS−αF )2+4βF αS

2
times the optimum.

Proof: Let be X∗ the set of facilities of an optimum solution to the original
instance. We have cF (X) + cS(X) ≤ 1

δ
(αF δcF (X∗) + αScS(X∗)) + βF δcF (X∗) +

βScS(X∗)) = (αF + δβF )cF (X∗) + (1
δ
αS + βS)cS(X∗). 2

4.4 Lower Bound on Approximation Guarantees

In this section we denote by α the solution of the equation α + 1 = ln 2
α
; we

have 0.463 ≤ α ≤ 0.4631. A simple calculation shows that α = α
α+1

ln 2
α

=

max{ ξ
ξ+1

ln 2
ξ

: ξ > 0}.
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We will show that 1 + α is the approximation ratio that can be achieved for
distances 1 and 3. More precisely, we have the following two results, both by
Guha and Khuller [1999]:

Theorem 4.10 Consider the Uncapacitated Facility Location Problem

restricted to instances where all service costs are within the interval [1, 3]. This
problem has an (1 + α + ε)-factor approximation algorithm for every ε > 0.

Proof: Let ε > 0, and let k := d 1
ε
e. Enumerate all solutions X ⊆ F with

|X| ≤ k.
We compute another solution as follows. We first open one facility i with min-

imum opening cost fi, and then apply greedy augmentation to obtain a solution
Y . We claim that the best solution costs at most 1 + α + ε times the optimum.

Let X∗ be an optimum solution and ξ = cF (X∗)
cS(X∗)

. We may assume that |X∗| >

k, as otherwise we have found X∗ above. Then cF ({i}) ≤ 1
k
cF (X∗). Moreover, as

the service costs are between 1 and 3, cS({i}) ≤ 3|D| ≤ 3cS(X∗).
By Lemma 4.6, the cost of Y is at most

1

k
cF (X∗) + cF (X∗) ln

(

max

{

1,
2cS(X∗)

cF (X∗)

})

+ cF (X∗) + cS(X∗)

= cS(X∗)

(

ξ

k
+ ξ ln

(

max

{

1,
2

ξ

})

+ ξ + 1

)

≤ (1 + α + ε)(1 + ξ)cS(X∗)

= (1 + α + ε)(cF (X∗) + cS(X∗)).
2

The performance guarantee seems to be best possible in view of the following:

Theorem 4.11 If there is an ε > 0 and a (1+α− ε)-factor approximation algo-
rithm for the metric Uncapacited Facility Location Problem, then there
is an algorithm for the Minimum Cardinality Set Cover Problem which
for every instance (U,S) computes a set cover R with |R| ≤ (1−ε2) ln |U |OPT(U,S).

By Feige’s [1998] result, the latter would imply that every problem in NP can
be solved in nO(log log n) time, where n is the input size.
Proof: Let (U,S) be a set system. If |U | ≤ e

α+2
ε , we solve the instance by

complete enumeration (in 22|U|
time, which is a constant depending on ε only).

Otherwise we run the following algorithm for each t ∈ {1, . . . , |U |}:
©1 Set R := ∅. Set F := S, D := U , and let cij := 1 for j ∈ i ∈ F and

cij := 3 for i ∈ F and j ∈ U \ {i}.
©2 Set fi := α|D|

t
.

©3 Find a (1+α−ε)-approximate solution X to the instance (F ,D, c, f)
of the Uncapacitated Facility Location Problem.
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©4 Set R := R ∪ X and D′ := {j ∈ D : cij = 3 for all i ∈ X}.
©5 If D′ = D, then stop (without output).

©6 Set D := D′. If D 6= ∅, then go to ©2 .
Note that the service costs defined in ©1 are metric. Clearly R covers U \D at

any stage. We claim that if there is a set cover of cardinality t, then the algorithm
terminates with D = ∅ and a set cover R with |R| ≤ t(1 − ε2) ln |U |. As we run
the algorithm for all possible values of t, this will conclude the proof.

Let us consider the k-th iteration of the algorithm, in which we denote nk :=
|D|, βk := |X|, and γk := |D′|

nk
. In ©3 of iteration k, the algorithm computes a

solution of cost βk
αnk

t
+ nk + 2|D′|. Suppose there is a set cover of cardinality t,

and thus a solution of cost tαnk

t
+ nk to the facility location instance. Then we

have βk
αnk

t
+ nk + 2|D′| ≤ (1 + α − ε)(α + 1)nk, and hence

βkα

t
+ 2γk ≤ (1 + α − ε)(α + 1) − 1

= α2 + 2α − ε(α + 1)

< α2 + 2α − εα(α + 2)

= (1 − ε)α(α + 2),

which implies
βk

t
< (1 − ε)(α + 2) (13)

and

βkα

t
+ 2γk < (1 − ε)α

(

1 + ln
2

α

)

≤ (1 − ε)α

(

1 + ln
2

(1 − ε)α

)

≤ xα + 2e−
x

1−ε

for all x > 0, as the right-hand side is minimized for x = (1− ε) ln 2
(1−ε)α

. Setting

x = βk

t
, we get

γk < e−
βk

t(1−ε) , (14)

and hence, for all k < l,

βk < t(1 − ε) ln
1

γk
. (15)

In particular, γk < 1 for all k, and the algorithm indeed terminates with D = ∅,
say after iteration l. Using (13) and (15), we conclude that the the algorithm
computes a set cover of cardinality

l
∑

k=1

βk ≤ t(1 − ε)

(

l−1
∑

k=1

ln
1

γk

+ α + 2

)
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= t(1 − ε)

(

ln

l−1
∏

k=1

1

γk
+ α + 2

)

= t(1 − ε)(ln |U | − lnnl + α + 2)

≤ t(1 − ε)(ln |U | + α + 2)

≤ t(1 − ε2) ln |U |

since |U | ≥ e
α+2

ε . 2

M. Sviridenko [unpublished] observed that this result can be strengthened
using the following result:

Theorem 4.12 For every fixed δ > 0 and ζ > 0, the following decision problem
is NP-hard: An instance consists of a set system (U,S) and a number t ∈ N,
such that either

(a) there exists a R ⊆ S with |R| = t and
⋃R = U , or

(b) for each R ⊆ S with |R| ≤ ζt we have |⋃R| ≤
(

1 − e−
|R|

t + δ
)

|U |.

The task is to decide whether (a) or (b) holds.

For the case ζ = 1 this was implicitly proved by Feige [1998], implying that
the problem that asks for covering as many elements as possible with a given
number t of sets in a given set system cannot be approximated with a factor
smaller than 1− 1

e
unless P = NP (cf. Theorem 5.3 in Feige’s paper; it is easy to

see that the greedy algorithm achieves precisely this factor). Theorem 4.12 can
be proved similarly (see also the hints in Section 5 of Feige, Lovász and Tetali
[2004]). This implies:

Theorem 4.13 (Sviridenko [unpublished]) If there is an ε > 0 and a (1+α− ε)-
factor approximation algorithm for the metric Uncapacitated Facility Lo-

cation Problem, then P = NP.

Proof: Suppose that for some 0 < ε < 1 there is a (1+α− ε)-factor approxima-
tion algorithm for the metric Uncapacitated Facility Location Problem.

Choose ζ := α + 3 and δ := e−ζ − e−
ζ

1−ε . Let (U,S, t) be an instance of the
decision problem defined in Theorem 4.12 (with parameters δ and ζ).

We run the algorithm in the proof of Theorem 4.11 for the given t, except
that we stop when D = ∅ or |R| ≥ t; say after l iterations. We show that the
output R can be used to decide between cases (a) and (b) in Theorem 4.12.
More precisely, assume that case (a) holds. We show that then |R| < ζt and

|⋃R| >
(

1 − e−
|R|
t + δ

)

|U |.
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Indeed, we get from (13) in the proof of Theorem 4.11 that |R| < t + (1 −
ε)(α + 2)t < ζt. Hence we are done if |⋃R| = |U |. Otherwise, (14) implies

|⋃R|
|U | = 1 −

l
∏

k=1

γk > 1 − e−
|R|

t(1−ε) > 1 − e−
|R|

t + δ,

as the function x 7→ e−x − e
− x

(1−ε) is monotonically decreasing for x ≥ 1 (the
derivative 1

1−ε
e−

x
1−ε − e−x is negative as 1

1−ε
= 1 + ε

1−ε
< e

ε
1−ε ≤ e

xε
1−ε = e−xe

x
1−ε ),

and 1 ≤ |R|
t

< ζ.
This means that we have a polynomial-time algorithm for the NP-hard deci-

sion problem defined in Theorem 4.12. 2

5 Reductions for More General Problems

We will now discuss two generalizations of the metric Uncapacitated Facility

Location Problem, which we can also solve with primal-dual algorithms dis-
cussed above, by two different techniques. Both techniques have been proposed
originally by Jain and Vazirani [2001].

5.1 Soft Capacities

In the Soft-Capacitated Facility Location Problem, each facility i ∈ F
has a capacity ui. If we assign a set D ⊆ D of customers to i, then we have to
open d |D|

ui
e copies of facility i, and consequently pay an opening cost of d |D|

ui
efi.

Another problem does not allow to open multiple copies of the facilities, i.e.
we have hard capacity bounds. This is called the Capacitated Facility Lo-

cation Problem and will be discussed in Section 7. It can probably not be
reduced easily to the Uncapacitated Facility Location Problem.

For soft capacities, however, the reduction is easy. Again we assume metric
service costs.

Theorem 5.1 (Mahdian, Ye and Zhang [2002]) Let γF and γS be constants and
A a polynomial-time algorithm such that, for every instance of the metric Un-

capacitated Facility Location Problem, A computes a solution X with
cF (X) + cS(X) ≤ γF cF (X∗) + γScS(X∗) for each ∅ 6= X∗ ⊆ F . Then there is
a (γF + γS)-factor approximation algorithm for the metric Soft-Capacitated

Facility Location Problem.

Proof: Consider an instance I = (F ,D, f, u, c) of the metric Soft-Capacitated

Facility Location Problem. We transform it to the instance I ′ = (F ,D, f, c′)
of the metric Uncapacitated Facility Location Problem, where c′ij :=

cij + fi

ui
for i ∈ F and j ∈ D. (Note that c′ is metric whenever c is metric.)
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We apply A to I ′ and find a solution X ∈ F and an assignment σ : D → X.
If σ∗ : D → F is an optimum solution to I, where X∗ := {i ∈ F : ∃j ∈ D :
σ∗(j) = i} is the set of facilities opened at least once,

∑

i∈X

⌈ |{j ∈ D : σ(j) = i}|
ui

⌉

fi +
∑

j∈D
cσ(j)j

≤
∑

i∈X

fi +
∑

j∈D
c′σ(j)j

≤ γF

∑

i∈X∗

fi + γS

∑

j∈D
c′σ∗(j)j

≤ (γF + γS)
∑

i∈X∗

⌈ |{j ∈ D : σ∗(j) = i}|
ui

⌉

fi + γS

∑

j∈D
cσ∗(j)j .

2

In particular, using the Jain-Mahdian-Saberi algorithm we get a 2.89-factor
approximation algorithm for the metric Soft-Capacitated Facility Loca-

tion Problem by Corollary 4.4; here γF = 1.11 and γS = 1.78. In a subsequent
paper, Mahdian, Ye and Zhang [2003] observed that the last inequality can be
strengthened:

Theorem 5.2 (Mahdian, Ye and Zhang [2003]) There is a 2-factor approxima-
tion algorithm for the metric Soft-Capacitated Facility Location Prob-

lem.

Proof: Indeed, here we have c′ij = cij + fi

ui
, and in the analysis of the Jain-

Mahdian-Saberi algorithm we get

vk ≤ rj,k + cij + cik

instead of (11) (with the original service costs c), and thus the analysis in (12)
yields

d
d
∑

j=1

vj ≤ dfi + d
d
∑

j=1

c′ij + (d − 1)
d
∑

j=1

cij.

This implies that the cost of the solution is at most

∑

i∈X∗

fi +
∑

j∈D
c′σ∗(j)j +

∑

j∈D
cσ∗(j)j ≤ 2

∑

i∈X∗

⌈
∑

j:σ∗(j)=i dj

ui

⌉

fi + 2
∑

j∈D
cσ∗(j)j .

2
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5.2 Bounding the Number of Facilities

For k ∈ N, the k-Facility Location Problem is the Uncapacitated Fa-

cility Location Problem with the additional constraint that no more than
k facilities may be opened. A special case, where facility opening costs are zero,
is the well-known k-Median Problem. In this section we describe an approxi-
mation algorithm for the metric k-Facility Location Problem.

When we have a problem which becomes much easier if a certain type of
constraints is omitted, Lagrangian relaxation is a common technique. In our
case, we will add a constant λ to each facility opening cost.

Theorem 5.3 (Jain and Vazirani [2001]) If there is a constant γS and a polynomial-
time algorithm A, such that for every instance of the metric Uncapacitated Fa-

cility Location Problem A computes a solution X such that cF (X)+cS(X) ≤
cF (X∗) + γScS(X∗) for each ∅ 6= X∗ ⊆ F , then there is a (2γS)-factor approxi-
mation algorithm for the metric k-Facility Location Problem with integral
data.

Proof: Let an instance of the metric k-Facility Location Problem be
given. We assume that service costs are integers within {0, 1, . . . , cmax} and fa-
cility opening costs are integers within {0, 1, . . . , fmax}.

First we check if OPT = 0, and find a solution of zero cost if one exists. This
is easy; see the proof of Lemma 5.4. Hence we assume OPT ≥ 1. Let X∗ be an
optimum solution (we will use it for the analysis only).

Let A(λ) ⊆ F be the solution computed by A for the instance where all facility
opening costs are increased by λ but the constraint on the number of facilities is
omitted. We have cF (A(λ)) + |A(λ)|λ + cS(A(λ)) ≤ cF (X∗) + |X∗|λ + γScS(X∗),
and hence

cF (A(λ)) + cS(A(λ)) ≤ cF (X∗) + γScS(X∗) + (k − |A(λ)|)λ (16)

for all λ ≥ 0. If |A(0)| ≤ k, then A(0) is a feasible solution costing at most γS

times the optimum, and we are done.
Otherwise A(0) > k, and note that |A(fmax + γS|D|cmax + 1)| = 1 ≤ k. Set

λ′ := 0 and λ′′ := fmax + γS|D|cmax + 1, and apply binary search, maintaining
|A(λ′′)| ≤ k < |A(λ′)|. After O(log |D| + log fmax + log cmax) iterations, in each
of which we set one of λ′, λ′′ to their arithmetic mean depending on whether
A(λ′+λ′′

2
) ≤ k or not, we have λ′′ − λ′ ≤ 1

|D|2 . (Note that this binary search works

although λ 7→ |A(λ)| is in general not monotonic.)
If |A(λ′′)| = k, then (16) implies that A(λ′′) is a feasible solution costing

at most γS times the optimum, and we are done. However, we will not always
encounter such a λ′′, because λ 7→ |A(λ)| is not always monotonic and can jump
by more than 1 (Archer, Rajagopalan and Shmoys [2003] showed how to fix this
by perturbing costs, but were unable to do it in polynomial time).
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Thus we consider X := A(λ′) and Y := A(λ′′) and assume henceforth |X| >
k > |Y |. Let α := k−|Y |

|X|−|Y | and β := |X|−k
|X|−|Y | .

Choose a subset X ′ of X with |X ′| = |Y | such that mini∈X′ cii′ = mini∈X cii′

for each i′ ∈ Y , where we write cii′ := minj∈D(cij + ci′j).
We open either all elements of X ′ (with probability α) or all elements of Y

(with probability β = 1 − α). In addition, we open a set of k − |Y | facilities of
X \X ′, chosen uniformly at random. Then the expected facility cost is αcF (X)+
βcF (Y ).

Let j ∈ D, and let i′ be a closest facility in X, and let i′′ be a closest facility
in Y . Connect j to i′ if it is open, else to i′′ if it is open. If neither i′ nor i′′ is
open, connect j to a facility i′′′ ∈ X ′ minimizing ci′′i′′′ .

This yields an expected service cost αci′j + βci′′j if i′ ∈ X ′ and at most

αci′j + (1 − α)βci′′j + (1 − α)(1 − β)ci′′′j

≤ αci′j + β2ci′′j + αβ

(

ci′′j + min
j′∈D

(ci′′j′ + ci′′′j′)

)

≤ αci′j + β2ci′′j + αβ(ci′′j + ci′′j + ci′j)

= α(1 + β)ci′j + β(1 + α)ci′′j

if i′ ∈ X \ X ′.
Thus the total expected service cost is at most

(1 + max{α, β})(αcS(X) + βcS(Y )) ≤
(

2 − 1

|D|

)

(αcS(X) + βcS(Y )).

Overall, using (16), we get an expected cost of at most
(

2 − 1

|D|

)

(α(cF (X) + cS(X)) + β(cF (Y ) + cS(Y )))

≤
(

2 − 1

|D|

)(

cF (X∗) + γScS(X∗) + (λ′′ − λ′)
(|X| − k)(k − |Y |)

|X| − |Y |

)

≤
(

2 − 1

|D|

)(

cF (X∗) + γScS(X∗) + (λ′′ − λ′)
|X| − |Y |

4

)

≤
(

2 − 1

|D|

)(

cF (X∗) + γScS(X∗) +
1

4|D|

)

≤
(

2 − 1

|D|

)(

1 +
1

4|D|

)

(cF (X∗) + γScS(X∗))

≤
(

2 − 1

2|D|

)

(cF (X∗) + γScS(X∗))

and thus at most 2γS(cF (X∗) + cS(X∗)).
Note that the expected cost is easy to compute even under the condition that

a subset Z is opened with probability 1 and randomly chosen k − |Z| facilities
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of some other set are opened. Hence one can derandomize this algorithm by the
method of conditional probabilities: first open X ′ or Y depending on where the
bound on the expected cost is at most (2 − 1

|D|)(α(cF (X) + cS(X)) + β(cF (Y ) +

cS(Y ))), and then successively open a facility of X \ X ′ such that this bound
continues to hold. 2

In particular, by the above Jain-Mahdian-Saberi algorithm (Corollary 4.4), we
obtain a 4-factor approximation algorithm for the metric k-Facility Location

Problem. The first constant-factor approximation algorithm for the metric k-
Facility Location Problem was due to Charikar et al. [2002].

The running time of the binary search is weakly polynomial and works for
integral data only. However we can make it strongly polynomial by discretizing
the input data:

Lemma 5.4 For any instance I of the metric k-Facility Location Problem,
γmax ≥ 1 and 0 < ε ≤ 1, we can decide whether OPT(I) = 0, and otherwise
generate another instance I ′ in O(|F||D| log(|F||D|)) time, such that all service

and facility costs are integers in {0, 1, . . . , 2γmax(k+|D|)3
ε

}, and for each 1 ≤ γ ≤
γmax, each solution to I ′ with cost at most γ OPT(I ′) is a solution to I with cost
at most γ(1 + ε) OPT(I).

Proof: Let n := k + |D|. Given an instance I, we first compute an upper
bound and a lower bound on OPT(I) differing by a factor 2n2 − 1 as follows. For
each B ∈ {fi : i ∈ F} ∪ {cij : i ∈ F , j ∈ D} we consider the bipartite graph
GB := (D ∪ F , {{i, j} : i ∈ F , j ∈ D, fi ≤ B, cij ≤ B}).

The smallest B for which the elements of D belong to at most k different
connected components of GB, each of which contains at least one facility, is a
lower bound on OPT(I). This number B can be found in O(|F||D| log(|F||D|))
time by a straightforward variant of Krukskal’s Algorithm for minimum
spanning trees.

Moreover, for this B we can choose an arbitrary facility in each connected
component of GB that contains an element of D, and connect each customer
with service cost at most (2|D|− 1)B (using that service costs are metric). Thus
OPT(I) ≤ kB +(2|D|− 1)|D|B < (2n2 − 1)B unless B = 0, in which case we are
done.

Thus we can ignore facilities and service costs exceeding B ′ := 2γmaxn
2B. We

obtain I ′ from I by rounding each cij to dmin{B′,cij}
δ

e and each fi to dmin{B′,fi}
δ

e,
where δ = εB

n
. Now all input numbers are integers in {0, 1, . . . , d 2γmaxn3

ε
e}.

We have

OPT(I ′) ≤ OPT(I)

δ
+ n =

OPT(I) + εB

δ
<

(2n2 − 1)B + εB

δ
≤ 2n2B

δ
=

B′

γmaxδ
,
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and thus a solution to I ′ of cost at most γ OPT(I ′) contains no element of cost
dB′

δ
e, and hence is a solution to I of cost at most

δγ OPT(I ′) ≤ γ(OPT(I) + εB) ≤ γ(1 + ε) OPT(I).
2

Corollary 5.5 There is a strongly polynomial 4-factor approximation algorithm
for the metric k-Facility Location Problem.

Proof: Apply Lemma 5.4 with γmax = 4 and ε = 1
4|D| , and apply Theorem

5.3 with the Jain-Mahdian-Saberi algorithm to the resulting instance. We have
γS = 2 by Corollary 4.4 and get a solution of total cost at most

(

2 − 1

2|D|

)(

1 +
1

4|D|

)

(cF (X∗) + γScS(X∗)) ≤ 4 (cF (X∗) + cS(X∗)) .
2

6 Local Search

Local search is a technique that is often applied successfully in practice, although
usually no good approximation guarantees can be shown. It was therefore a
surprise to learn that facility location problems can be approximated well by local
search. This was first explored by Korupolu, Plaxton and Rajaraman [2000] and
led to several strong results subsequently. We shall present some of them in this
and the next section.

The main advantage of local search algorithms is their flexibility; they can
be applied to arbitrary cost functions and even in the presence of complicated
additional constraints. We will see this in Section 7 when we deal with a quite
general problem, including hard capacities.

In this section we consider the k-Median Problem and the Uncapaci-

tated Facility Location Problem, both with metric service costs. For the
metric k-Median Problem, local search yields the best known performance ra-
tio. Before presenting this result, we start with the simplest possible local search
algorithm.

6.1 Single Swaps for the k-Median Problem

We start with an arbitrary feasible solution (set of k facilities) and improve it by
certain “local” steps. Let us first consider single swaps only.

Theorem 6.1 (Arya et al. [2004]) Consider an instance of the metric k-Median

Problem. Let X be a feasible solution and X∗ an optimum solution. If cS((X \
{x}) ∪ {y}) ≥ cS(X) for all x ∈ X and y ∈ X∗, then cS(X) ≤ 5cS(X∗).
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Proof: Let us consider optimum assignments σ and σ∗ of the customers to the
k facilities in X and X∗, respectively. We say that x ∈ X captures y ∈ X∗ if
|{j ∈ D : σ(j) = x, σ∗(j) = y}| > 1

2
|{j ∈ D : σ∗(j) = y}|. Each y ∈ X∗ is

captured by at most one x ∈ X.
Let π : D → D be a bijection such that for all j ∈ D:

• σ∗(π(j)) = σ∗(j); and

• if σ(π(j)) = σ(j) then σ(j) captures σ∗(j).

Such a mapping π can be obtained easily by ordering, for each y ∈ X∗, the
elements of {j ∈ D : σ∗(j) = y} = {j0, . . . , jt−1} such that customers j with
identical σ(j) are consecutive, and setting π(jk) := jk′ , where k′ = (k+b t

2
c) mod t.

We now define k swaps (x, y) with x ∈ X and y ∈ X∗. Each y ∈ X∗ will serve
as target in exactly one of these swaps.

If an x ∈ X captures only one facility y ∈ X∗, we consider a swap (x, y). If
there are l such swaps, then there are k − l elements left in X and in X∗. Some
of the remaining elements of X (at most k−l

2
) may capture at least two facilities

of X∗; we will not consider these. For each remaining facility y ∈ X∗ we choose
an x ∈ X such that x does not capture any facility, and such that each x ∈ X is
source of at most two such swaps.

We now analyze the swaps one by one. Consider the swap (x, y), i.e. the set
of facilities changes from X to X ′ := (X \ {x}) ∪ {y}; note that the case y ∈ X
is not excluded. If |X ′| < |X| = k, then X ′ can be extended by an arbitrary
facility without increasing the cost. Transform σ : D → X to a new assignment
σ′ : D → X ′ by reassigning customers as follows:

Customers j ∈ D with σ∗(j) = y are assigned to y. Customers j ∈ D with
σ(j) = x and σ∗(j) = y′ ∈ X∗\{y} are assigned to σ(π(j)); note that σ(π(j)) 6= x
as x does not capture y′. For all other customers, the assignment does not change.

We have

0 ≤ cS(X ′) − cS(X)

≤
∑

j∈D:σ∗(j)=y

(cσ∗(j)j − cσ(j)j) +
∑

j∈D:σ(j)=x,σ∗(j)6=y

(cσ(π(j))j − cσ(j)j)

≤
∑

j∈D:σ∗(j)=y

(cσ∗(j)j − cσ(j)j) +
∑

j∈D:σ(j)=x

(cσ(π(j))j − cσ(j)j)

as cσ(π(j))j ≥ mini∈X cij = cσ(j)j by definition of σ.
We now sum over all swaps. Note that each facility of X∗ is target of exactly

one swap, thus the sum of the first terms is cS(X∗) − cS(X). Moreover, each
x ∈ X is source of at most two swaps. Hence

0 ≤
∑

j∈D
(cσ∗(j)j − cσ(j)j) + 2

∑

j∈D
(cσ(π(j))j − cσ(j)j)
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≤ cS(X∗) − cS(X) + 2
∑

j∈D
(cσ∗(j)j + cσ∗(j)π(j) + cσ(π(j))π(j) − cσ(j)j)

= cS(X∗) − cS(X) + 2
∑

j∈D
(cσ∗(j)j + cσ∗(π(j))π(j))

= cS(X∗) − cS(X) + 4cS(X∗),

because π is a bijection. 2

Thus a local optimum is a 5-approximation. However, this does not make any
statement about the running time to achieve a local optimum, and the number
of steps to reach a local optimum could in fact be exponential. However, by
applying Lemma 5.4 (i.e. by discretizing costs) we obtain a strongly polynomial
running time.

Another possibility is to make only moves that are sufficiently profitable:

Lemma 6.2 (Arya et al. [2004]) Let 0 < ε < 1, and let a discrete minimiza-
tion problem be given with objective function cost. Let k ∈ N, let N (X) be a
neighbourhood defined for each feasible solution X, and N ′(X) ⊆ N (X) with
|N ′(X)| ≤ q. Suppose that, for some α ≥ 1, each feasible solution X satisfies

∑

X′∈N ′(X)

(cost(X ′) − cost(X)) ≤ α OPT−cost(X). (17)

Then consider a local search algorithm that starts with any feasible solution X
and moves to an X ′ ∈ N (X) with cost(X ′) < (1− ε

2αq
)cost(X) as long as there is

such an X ′. Then after a number of iterations which is polynomial in the input
size, q and 1

ε
, this algorithm stops with an (α + ε)-approximate solution.

Proof: Each iteration decreases the cost by at least a factor 1− ε
2αq

. If we start
with solution X and end up with solution Y , the number of iterations is at most

log cost(X)
cost(Y )

log 1
1− ε

2αq

≤ 2αq

ε
(log cost(X) − log cost(Y )),

as − log(1 − x) > x for 0 < x < 1. Hence the number of iterations is polynomial
in the input size, q and 1

ε
.

We end up with a solution X such that cost(X ′) ≥ (1 − ε
2αq

)cost(X) for all
X ′ ∈ N (X). Summing over all X ′ ∈ N ′(X) we get

− ε

2α
cost(X) ≤ − ε

2αq
|N ′(X)|cost(X)

≤
∑

X′∈N ′(X)

(cost(X ′) − cost(X))

≤ α OPT−cost(X)
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and hence
cost(X) <

α

1 − ε
2α

OPT ≤ (α + ε) OPT

as ε ≤ 1 ≤ α. 2

In the above theorem as well as in the following ones, we showed (17) for a
polynomially bounded q. The most efficient running time is obtained by combin-
ing Lemma 5.4 and Lemma 6.2

A related result on achieving approximate local optima has been obtained
by Orlin, Punnen and Schulz [2004]: They showed that for a general discrete
minimization problem with modular objective function and a neighbourhood for
which each local minimum costs at most α times the optimum, and for which the
question whether a given feasible solution is a local optimum can be decided in
polynomial time, an (α + ε)-approximate solution can be obtained for any ε > 0
by a combination of local search and scaling, in a running time that depends
polynomially on the input size and linearly on 1

ε
.

6.2 Better Performance Guarantee by Multiswaps

We have shown that local search with single swaps yields a (5 + ε)-factor ap-
proximation algorithm for the metric k-Median Problem for any ε > 0. Using
multiswaps the approximation guarantee can be improved significantly:

Theorem 6.3 (Arya et al. [2004]) Consider an instance of the metric k-Median

Problem, and let p ∈ N. Let X be a feasible solution and X∗ an optimum
solution. If cS((X \ {A}) ∪ {B}) ≥ cS(X) for all A ⊆ X and B ⊆ X∗ with
|A| = |B| ≤ p, then cS(X) ≤ (3 + 2

p
)cS(X∗).

Proof: Let σ and σ∗ be again optimum assignments of the customers to the
k facilities in X and X∗, respectively. For each A ⊆ X, let C(A) be the set of
facilities in X∗ that are captured by A, i.e.

C(A) :=

{

y ∈ X∗ : |{j ∈ D : σ(j) ∈ A, σ∗(j) = y}| >
1

2
|{j ∈ D : σ∗(j) = y}|

}

.

We partition X = A1

.∪ · · · .∪ Ar and X∗ = B1

.∪ · · · .∪ Br as follows:

Let {x ∈ X : C({x}) 6= ∅} = {x1, . . . , xr} =: X̄.
For i = 1 to r − 1 do:

Set Ai := {xi}.
While |Ai| < |C(Ai)| do:

Add an element x ∈ X \ (A1 ∪ · · · ∪ Ai ∪ X̄) to Ai.
Set Bi := C(Ai).

Set Ar := X \ (A1 ∪ · · · ∪ Ar−1) and Br := X∗ \ (B1 ∪ · · · ∪ Br−1).
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It is clear that this algorithm guarantees |Ai| = |Bi| for i = 1, . . . , r, and that
the sets A1, . . . , Ar are pairwise disjoint and B1, . . . , Br are pairwise disjoint.
Note that adding an element is always possible if |Ai| < |C(Ai)|, because then
|X \ (A1 ∪ · · · ∪ Ai−1 ∪ X̄)| = |X| − |A1| − · · · − |Ai| − |{xi+1, . . . , xr}| > |X∗| −
|C(A1)| − · · · − |C(Ai)| − |C({xi+1})| − · · · − |C({xr})| = |X∗ \ (C(A1) ∪ · · · ∪
C(Ai) ∪ C({xi+1}) ∪ · · · ∪ C({xr}))| ≥ 0.

Let π : D → D be a bijection such that for all j ∈ D:

• σ∗(π(j)) = σ∗(j);

• if σ(π(j)) = σ(j) then σ(j) captures σ∗(j); and

• if σ(j) ∈ Ai and σ(π(j)) ∈ Ai for some i ∈ {1, . . . , r}, then Ai captures
σ∗(j).

Such a mapping π can be obtained almost identically as above.
We now define a set of swaps (A, B) with |A| = |B| ≤ p, A ⊆ X and B ⊆ X∗.

Each swap will be associated with a positive weight. The swap (A, B) means that
X is replaced by X ′ := (X \ A) ∪ B; we say that A is the source set and B is
the target set. If |X ′| < |X| = k, we can extend X ′ by adding arbitrary k − |X ′|
facilities without increasing the cost.

For each i ∈ {1, . . . , r} with |Ai| ≤ p, we consider the swap (Ai, Bi) with
weight 1. For each i ∈ {1, . . . , r} with |Ai| = q > p, we consider the swap
({x}, {y}) with weight 1

q−1
for each x ∈ Ai \ {xi} and y ∈ Bi. Each y ∈ X∗

appears in the target set of swaps of total weight 1, and each x ∈ X appears in
the source set of swaps of total weight at most p+1

p
.

We reassign customers as with the single swaps. More precisely, for a swap
(A, B) we reassign all j ∈ D with σ∗(j) ∈ B to σ∗(j) and all j ∈ D with
σ∗(j) /∈ B and σ(j) ∈ A to σ(π(j)). Note that we have B ⊇ C(A) for each of the
considered swaps (A, B). Thus, for all j ∈ D with σ(j) ∈ A and σ∗(j) /∈ B we
have σ(π(j)) /∈ A. Therefore we can bound the increase of the cost due to the
swap as follows:

0 ≤ cS(X ′) − cS(X)

≤
∑

j∈D:σ∗(j)∈B

(cσ∗(j)j − cσ(j)j) +
∑

j∈D:σ(j)∈A,σ∗(j)/∈B

(cσ(π(j))j − cσ(j)j)

≤
∑

j∈D:σ∗(j)∈B

(cσ∗(j)j − cσ(j)j) +
∑

j∈D:σ(j)∈A

(cσ(π(j))j − cσ(j)j)

as cσ(π(j))j ≥ cσ(j)j by definition of σ. Hence taking the weighted sum over all
swaps yields

0 ≤
∑

j∈D
(cσ∗(j)j − cσ(j)j) +

p + 1

p

∑

j∈D
(cσ(π(j))j − cσ(j)j)
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≤ cS(X∗) − cS(X) +
p + 1

p

∑

j∈D
(cσ∗(j)j + cσ∗(j)π(j) + cσ(π(j))π(j) − cσ(j)j)

= cS(X∗) − cS(X) +
p + 1

p

∑

j∈D
(cσ∗(j)j + cσ∗(π(j))π(j))

= cS(X∗) − cS(X) + 2
p + 1

p
cS(X∗),

because π is a bijection. 2

Arya et al. [2004] also showed that this performance guarantee is tight. We
have a (3+ε)-factor approximation algorithm for any ε > 0, which is the currently
best known approximation guarantee for the metric k-Median Problem.

6.3 Local Search for Uncapacitated Facility Location

We apply similar techniques to the Uncapacitated Facility Location Prob-

lem to obtain a simple approximation algorithm based on local search:

Theorem 6.4 (Arya et al. [2004]) Consider an instance of the metric Uncapac-

itated Facility Location Problem. Let X and X∗ be any feasible solutions.
If neither X \{x} nor X∪{y} nor (X \{x})∪{y} is better than X for any x ∈ X
and y ∈ F \X, then cS(X) ≤ cF (X∗) + cS(X∗) and cF (X) ≤ cF (X∗) + 2cS(X∗).

Proof: We use the same notation as in the previous proofs. In particular, let
σ and σ∗ be optimum assignments of the customers to X and X∗, respectively.

The first inequality is easily proved by considering the operations of adding an
y ∈ X∗ to X, which increases the cost by at most fy +

∑

j∈D:σ∗(j)=y(cσ∗(j)j−cσ(j)j).
Summing these values up yields that cF (X∗) + cS(X∗) − cS(X) is nonnegative.

Let again π : D → D be a bijection such that for all j ∈ D:

• σ∗(π(j)) = σ∗(j);

• if σ(π(j)) = σ(j) then σ(j) captures σ∗(j) and π(j) = j.

Such a mapping π can be obtained identically as above after fixing π(j) := j for
|{j ∈ D : σ∗(j) = y, σ(j) = x}| − |{j ∈ D : σ∗(j) = y, σ(j) 6= x}| elements j ∈ D
with σ∗(j) = y and σ(j) = x for any pair x ∈ X, y ∈ X∗ where x captures y.

To bound the facility cost of X, let x ∈ X, and let Dx := {j ∈ D : σ(j) = x}.
If x does not capture any y ∈ X∗, we consider dropping x and reassigning each
j ∈ Dx to σ(π(j)) ∈ X \ {x}. Hence

0 ≤ −fx +
∑

j∈Dx

(cσ(π(j))j − cxj). (18)
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If the set C({x}) of facilities captured by x is nonempty, let y ∈ C({x}) be
the nearest facility in C({x}) (i.e. minj∈D(cxj + cyj) is minimum). We consider
the addition of each facility y′ ∈ C({x}) \ {y}, which increases the cost by at
most

fy′ +
∑

j∈Dx:σ∗(j)=y′,π(j)=j

(cσ∗(j)j − cxj). (19)

Moreover, we consider the swap ({x}, {y}). For j ∈ Dx we reassign j to
σ(π(j)) if π(j) 6= j, and to y otherwise.

The new service cost for j ∈ Dx is at most cσ(π(j))j in the first case, cσ∗(j)j if
π(j) = j and σ∗(j) = y, and

cyj ≤ cxj + min
k∈D

(cxk + cyk) ≤ cxj + min
k∈D

(cxk + cσ∗(j)k) ≤ 2cxj + cσ∗(j)j

otherwise, as x captures σ∗(j) in the latter case.
Altogether, the swap from x to y increases the cost by at most

fy − fx −
∑

j∈Dx

cxj +
∑

j∈Dx:π(j)6=j

cσ(π(j))j

+
∑

j∈Dx:π(j)=j,σ∗(j)=y

cσ∗(j)j +
∑

j∈Dx:π(j)=j,σ∗(j)6=y

(2cxj + cσ∗(j)j).
(20)

Adding the nonnegative terms (19) and (20) yields

0 ≤
∑

y′∈C(x)

fy′ − fx +
∑

j∈Dx:π(j)6=j

(cσ(π(j))j − cxj)

+
∑

j∈Dx:π(j)=j,σ∗(j)=y

(cσ∗(j)j − cxj) +
∑

j∈Dx:π(j)=j,σ∗(j)6=y

2cσ∗(j)j

≤
∑

y′∈C(x)

fy′ − fx +
∑

j∈Dx:π(j)6=j

(cσ(π(j))j − cxj) + 2
∑

j∈Dx:π(j)=j

cσ∗(j)j

(21)

Summing (18) and (21), respectively, over all x ∈ X yields

0 ≤
∑

x∈X

∑

y′∈C(x)

fy′ − cF (X) +
∑

j∈D:π(j)6=j

(cσ(π(j))j − cσ(j)j) + 2
∑

j∈D:π(j)=j

cσ∗(j)j

≤ cF (X∗) − cF (X) +
∑

j∈D:π(j)6=j

(cσ∗(j)j + cσ∗(j)π(j) + cσ(π(j))π(j) − cσ(j)j)

+2
∑

j∈D:π(j)=j

cσ∗(j)j

= cF (X∗) − cF (X) + 2cS(X∗).
2

This directly implies that we have a (3 + ε)-approximation for any ε > 0.
However, by Theorem 4.7, we get a 2.375-approximation algorithm by multiplying
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facility costs by δ = 1.4547, applying the above local search technique, scaling
facility costs back, and applying greedy augmentation.

Instead, for a simpler result, we could multiply facility costs by
√

2 before
applying local search, and we obtain a solution X with cS(X) ≤

√
2cF (X∗) +

cS(X∗) and
√

2cF (X) ≤
√

2cF (X∗) + 2cS(X∗). Hence cF (X) + cS(X) ≤ (1 +√
2)(cF (X∗)+ cS(X∗)), and we get the slightly worse approximation guarantee of

Arya et al. [2004], namely (1 +
√

2 + ε) ≈ 2.415, without greedy augmentation.
(This can be viewed as an application of Proposition 4.9.)

Charikar and Guha [1999] proved the same approximation guarantee for a
very similar local serach algorithm.

7 Capacitated Facility Location

In this section we consider hard capacities. Local search is the only technique
known to lead to an approximation guarantee for hard capacities. In fact, we show
that an even more general problem, called the Universal Facility Location

Problem, can be solved up to a factor of 6.702 by a local search algorithm. This
includes the metric Capacitated Facility Location Problem (with hard
capacities), for which local search is also the only technique that is known to lead
to an approximation algorithm. But it also includes simpler problems like the
metric Soft-Capacitated Facility Location Problem.

When dealing with hard capacities, we have to allow the demand of customers
to be split, i.e. assigned to multiple open facilities. However, the total demand
assigned to a facility must not exceed its capacity. If we do not allow splitting,
we cannot expect any result as even deciding whether a feasible solution exists
at all is NP-complete (it contains the well-known Partition problem).

7.1 Capacitated and Universal Facility Location

The (metric) Capacitated Facility Location Problem is defined as follows:
Given:

• a finite set V and distances cij ≥ 0 (i, j ∈ V ) with cij + cjk ≥ cik for all
i, j, k ∈ V .

• a set D ⊆ V of customers (or clients);

• a set F ⊆ V of potential facilities;

• a fixed cost fi ≥ 0 for opening each facility i ∈ F ;

• a capacity ui ≥ 0 for each facility;

• a demand dj ≥ 0 for each client.
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we look for:

• a subset S of facilities (called open) and

• an assignment x : S × D → R+ of customers’ demand to open facilities,
where

∑

i∈S xij = dj for all j ∈ D,

such that the sum of facility costs and service costs

∑

i∈S

fi +
∑

i∈S

∑

j∈D
cijxij

is minimum.
Note that for a fixed set S of opened facilities, an optimum assignment x can

be found be solving a transshipment problem. If all ui and dj are integral, there
is an integral optimum assignment. In particular, if capacities are integral and
all demands are 1, the demand will not be split.

The first approximation algorithm for the general case is due to Pál, Tardos
and Wexler [2001], extending an earlier result for a special case by Korupolo,
Plaxton and Rajamaran [2000]. The approximation guarantee was then improved
to 5.83 by Zhang, Chen and Ye [2004]. For the special case of uniform facility
opening costs, Levi, Shmoys and Swamy [2004] obtained a 5-factor approximation
algorithm by rounding an LP relaxation.

The work by Pál, Tardos and Wexler has been generalized to the so-called
Universal Facility Location Problem by Mahdian and Pál [2003]. In the
Universal Facility Location Problem we are given V, c,F ,D, d as above,
and a non-decreasing, left-continuous function fi : R+ → R+ ∪ {∞}, where fi(u)
is the cost to install capacity u at facility i. The task is to find numbers xij ≥ 0
(i ∈ F , j ∈ D) with

∑

i∈F xij = dj for all j ∈ D (i.e. a fractional assignment)
such that c(x) := cF (x) + cS(x) is minimum, where

cF (x) :=
∑

i∈F
fi

(

∑

j∈D
xij

)

and cS(x) :=
∑

i∈F

∑

j∈D
cijxij.

Lemma 7.1 (Mahdian and Pál [2003]) Every instance of the Universal Fa-

cility Location Problem has an optimum solution.

Proof: If there is no solution with finite cost, any solution is optimum. Oth-
erwise let (xi)i∈N be a sequence of solutions whose costs approach the infimum
c∗ of the set of costs of feasible solutions. As this sequence is bounded, there is
a subsequence (xij )j∈N converging to some x∗. As all fi are left-continuous and
non-decreasing, we have c(x∗) = c(limj→∞ xij ) ≤ limj→∞ c(xij ) = c∗, i.e. x∗ is
optimum. 2
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For an algorithm, we have to specify how the functions fi are given. We
need an oracle that, for each i ∈ F , u, c ∈ R+ and t ∈ R, computes fi(u) and
max{δ ∈ R : u+ δ ≥ 0, fi(u+ δ)−fi(u)+ c|δ| ≤ t}. This is a natural assumption
as this oracle can be implemented trivially for all special cases of the Universal

Facility Location Problem considered before.

7.2 Add Operation

In the following sections, based on Vygen [2005], we will present a local search
algorithm for the Universal Facility Location Problem. It uses two op-
erations. First, for t ∈ F and δ ∈ R+ we consider the operation Add(t, δ), which
means replacing the current feasible solution x by an optimum solution y of the
transshipment problem

min

{

cS(y) : y : F ×D → R+,
∑

i∈F
yij = dj (j ∈ D),

∑

j∈D
yij ≤

∑

j∈D
xij (i ∈ F \ {t}),

∑

j∈D
ytj ≤

∑

j∈D
xtj + δ

}

.

We denote by cx(t, δ) := cS(y) − cS(x) + ft(
∑

j∈D xtj + δ) − ft(
∑

j∈D xtj) the
estimated cost of this operation; this is an upper bound on c(y) − c(x).

Lemma 7.2 (Mahdian and Pál [2003]) Let ε > 0 and t ∈ F . Let x be a feasi-
ble solution to a given instance. Then there is an algorithm with running time
O(|V |3 log |V |ε−1) to find a δ ∈ R+ with cx(t, δ) ≤ −εc(x) or decide that no
δ ∈ R+ exists for which cx(t, δ) ≤ −2εc(x).

Proof: Let C := {νεc(x) : ν ∈ Z+, ν ≤ 1
ε
}. For each γ ∈ C let δγ be the

maximum δ ∈ R+ for which ft(
∑

j∈D xtj + δ) − ft(
∑

j∈D xtj) ≤ γ. We compute
cx(t, δγ) for all γ ∈ C.

Suppose there is a δ ∈ R+ with cx(t, δ) ≤ −2εc(x). Then consider γ :=
εc(x)d 1

εc(x)
(ft(
∑

j∈D xtj + δ) − ft(
∑

j∈D xtj))e ∈ C. Note that δγ ≥ δ and hence

cx(t, δγ) < cx(t, δ) + εc(x) ≤ −εc(x).
The running time is dominated by solving |C| transshipment problems in a

digraph with |V | vertices. 2

If there is no sufficiently profitable Add operation, the service cost can be
bounded. The following result is essentially due to Pál, Tardos and Wexler [2001]:

Lemma 7.3 Let ε > 0, and let x, x∗ be feasible solutions to a given instance, and
let cx(t, δ) ≥ − ε

|F|c(x) for all t ∈ F and δ ∈ R+. Then cS(x) ≤ cF (x∗) + cS(x∗) +

εc(x).
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Proof: Consider the (complete bipartite) digraph G = (D .∪ F , (D × F) ∪
(F × D)) with edge weights c((j, i)) := cij and c((i, j)) := −cij for i ∈ F and
j ∈ D. Let b(i) :=

∑

j∈D(xij − x∗
ij) for i ∈ F , S := {i ∈ F : b(i) > 0} and

T := {i ∈ F : b(i) < 0}.
Define a b-flow g : E(G) → R+ by g(i, j) := max{0, xij − x∗

ij} and g(j, i) :=
max{0, x∗

ij − xij} for i ∈ F , j ∈ D.
Write g as the sum of bt-flows gt for t ∈ T , where bt(t) = b(t) and 0 ≤

bt(v) ≤ b(v) for v ∈ V (G)\T . (This can be done by standard flow decomposition
techniques.)

For each t ∈ T , gt defines a feasible way to reassign customers to t, i.e. a new
solution xt defined by xt

ij := xij + gt(j, i) − gt(i, j) for i ∈ F , j ∈ D. We have
cS(xt) = cS(x) +

∑

e∈E(G) c(e)gt(e) and hence

cx(t, b(t)) ≤
∑

e∈E(G)

c(e)gt(e) + ft

(

∑

j∈D
x∗

tj

)

− ft

(

∑

j∈D
xtj

)

.

If the left-hand side is at least − ε
|F|c(x) for each t ∈ T , summation yields

−εc(x) ≤
∑

e∈E(G)

c(e)g(e) +
∑

t∈T

ft

(

∑

j∈D
x∗

tj

)

≤
∑

e∈E(G)

c(e)g(e) + cF (x∗)

= cS(x∗) − cS(x) + cF (x∗).
2

7.3 Pivot Operation

Let x be a feasible solution for a given instance of the Universal Facility

Location Problem. Let A be an arborescence with V (A) ⊆ F and δ ∈ ∆x
A :=

{δ ∈ R
V (A) :

∑

j∈D xij + δi ≥ 0 for all i ∈ V (A),
∑

i∈V (A) δi = 0}.
Then we consider the operation Pivot(A, δ), which means replacing x by a

solution x′ with
∑

j∈D x′
ij =

∑

j∈D xij +δi for i ∈ V (A) and c(x′) ≤ c(x)+cx(A, δ),
where cx(A, δ) :=

∑

i∈V (A) cx
A,i(δ) and

cx
A,i(δ) := fi

(

∑

j∈D
xij + δi

)

− fi

(

∑

j∈D
xij

)

+

∣

∣

∣

∣

∑

j∈A+
i

δj

∣

∣

∣

∣

cip(i)

for i ∈ V (A). Here A+
i denotes the set of vertices reachable from i in A, and p(i)

is the predecessor of i in A (and p(i) arbitrary if i is the root). Such an x′ can be
constructed easily by moving demand along the edges in A in reverse topological
order. Note that the orientation of A is irrelevant and used only to simplify the
notation.
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The operation will be performed if its estimated cost cx(A, δ) is at most −εc(x).
This guarantees that the resulting local search algorithm stops after a polynomial

number of improvement steps. We call
∑

i∈V (A)

∣

∣

∣

∑

j∈A+
i

δj

∣

∣

∣
cip(i) the estimated

routing cost of Pivot(A, δ).
We now show how to find an improving Pivot operation unless we are at an

approximate local optimum:

Lemma 7.4 (Vygen [2005]) Let ε > 0 and A an arborescence with V (A) ⊆
F . Let x be a feasible solution. Then there is an algorithm with running time
O(|F|4ε−3) to find a δ ∈ ∆x

A with cx(A, δ) ≤ −εc(x) or decide that no δ ∈ ∆x
A

exists for which cx(A, δ) ≤ −2εc(x).

Proof: Number V (A) = {1, . . . , n} in reverse topological order, i.e. for all
(i, j) ∈ A we have i > j. For k ∈ V (A) with (p(k), k) ∈ E(A) let B(k) :=
{i < k : (p(k), i) ∈ E(A)} be the set of smaller siblings of k, and let B(k) := ∅
if k is the root of A. Let Ik :=

⋃

j∈B(k)∪{k} A+
j , b(k) := max({0} ∪ B(k)) and

s(k) := max({0} ∪ (A+
k \ {k})).

Let C := {ν ε
n
c(x) : ν ∈ Z,−n

ε
≤ ν ≤ n

ε
}. We compute the table T x

A :
{0, . . . , n} × C → ∆x

A ∪ {∅} defined as follows. Let T x
A(0, 0) := 0, T x

A(0, γ) := ∅
for all γ ∈ C \ {0}, and for k = 1, . . . , n let T x

A(k, γ) be an optimum solution δ of

max

{

∑

i∈Ik

δi : δi = (T x
A(b(k), γ′))i for i ∈

⋃

j∈B(k)

A+
j , γ′ ∈ C,

δi = (T x
A(s(k), γ′′))i for i ∈ A+

k \ {k}, γ′′ ∈ C,
∑

j∈D
xkj + δk ≥ 0, γ′ + γ′′ + cx

A,k(δ) ≤ γ

}

if the set over which the maximum is taken is nonempty, and T x
A(k, γ) := ∅

otherwise.
Roughly, T x

A(k, γ) is the minimum excess we get at the predecessor p(k) of k
when moving demand from each vertex in A+

j for j ∈ B(k)∪{k} to its predecessor
or vice versa, at total rounded estimated cost at most γ.

Finally we choose the minimum γ ∈ C such that T x
A(n, γ) 6= ∅ and

∑n
i=1(T

x
A(n, γ))i ≥

0. Then we choose δ ∈ ∆x
A such that δi = (T x

A(n, γ))i or max{0,−∑j∈A+
i \{i} δj} ≤

δi ≤ (T x
A(n, γ))i for all i = 1, . . . , n. This corresponds to the operation Pivot(A, δ)

with cx(A, δ) ≤ γ.
Suppose there exists an operation Pivot(A, δ) with cx(A, δ) ≤ −2εc(x). As

cx
A,i(δi) ≥ −fi(

∑

j∈D xij) ≥ −c(x), this also implies cx
A,i(δi) < cF (x) ≤ c(x).

Hence γi := dcx
A,i(δi)

n
εc(x)

e εc(x)
n

∈ C for i = 1, . . . , n, and
∑

i∈I γi ∈ C for all

I ⊆ {1, . . . , n}. Then
∑

i∈Ik
(T x

A(k,
∑

j∈Ik
γj))i ≥

∑

i∈Ik
δi for k = 1, . . . , n. Hence

we find a pivot operation with estimated cost at most
∑n

i=1 γi < cx(A, δ)+εc(x) ≤
−εc(x).
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The running time can be estimated as follows. We have to compute n|C|
table entries, and for each entry T x

A(k, γ) we try all values of γ ′, γ′′ ∈ C. This
yields values δi for i ∈ Ik \ {k}, and the main step is to compute the maximum
δk for which γ′ + γ′′ + cx

A,k(δ) ≤ γ. This can be done directly with the oracle
that we assumed for the functions fi, i ∈ F . The final computation of δ from
T x

A(n, γ), γ ∈ C, is easily done in linear time. Hence the overall running time is
O(n|C|3) = O(|F|4ε−3). 2

We consider Pivot(A, δ) for special arborescences: stars and comets. A is
called a star centered at v if A = (F , {(v, w) : w ∈ F \ {v}}) and a comet with
center v and tail (t, s) if A = (F , {(t, s)} ∪ {(v, w) : w ∈ F \ {v, s}}) and v, t, s
are distinct elements of F . Note that there are less than |F|3 stars and comets.
We remark that our Pivot operation for stars is identical to the pivot operation
proposed by Mahdian and Pál [2003].

7.4 Bounding the Facility Cost

We will now show that an (approximate) local optimum has low facility cost. The
first part of the following proof is identical to the one of Mahdian and Pál [2003].
The second part uses ideas of Zhang, Chen and Ye [2004], and exploits the new
Pivot operation with comets.

Lemma 7.5 Let x, x∗ be feasible solutions to a given instance, and let cx(A, δ) ≥
− ε

|F|c(x) for all stars and comets A and δ ∈ ∆x
A. Then cF (x) ≤ 4cF (x∗) +

2cS(x∗) + 2cS(x) + εc(x).

Proof: We use the notation of Lemma 7.3 and consider the transshipment prob-
lem

minimize
∑

s∈S,t∈T

csty(s, t)

subject to
∑

t∈T

y(s, t) = b(s) for all s ∈ S,

∑

s∈S

y(s, t) = −b(t) for all t ∈ T,

y(s, t) ≥ 0 for all s ∈ S, t ∈ T.

(22)

It is well-known from min-cost flow theory that there exists an optimum so-
lution y : S × T → R+ of (22) such that F := (S ∪ T, {{s, t} : y(s, t) > 0}) is a
forest.
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As (bt(s))s∈S,t∈T is a feasible solution of (22), we have

∑

s∈S,t∈T

csty(s, t) ≤
∑

s∈S,t∈T

cstbt(s)

=
∑

s∈S,t∈T

cst(gt(δ
+(s)) − gt(δ

−(s)))

≤
∑

e∈E(G)

|c(e)|g(e)

≤ cS(x∗) + cS(x).

(23)

We will now define at most |F| Pivot operations. We say that an operation
Pivot(A, δ) closes s ∈ S if

∑

j∈D xsj >
∑

j∈D xsj + δs =
∑

j∈D x∗
sj. We say that

it opens t ∈ T if
∑

j∈D xtj <
∑

j∈D xtj + δt ≤
∑

j∈D x∗
tj . Over all operations that

we are going to define, each s ∈ S will be closed once, and each t ∈ T will be
opened at most four times. Moreover, the total estimated routing cost will be at
most 2

∑

s∈S,t∈T csty(s, t). Thus the total estimated cost of the operations will be
at most 4cF (x∗) + 2cS(x∗) + 2cS(x) − cF (x). This will prove the lemma.

To define the operations, consider a connected component of F , and reorient
it as an arborescence B rooted at an element of T . Write y(e) := y(s, t) if
e ∈ E(B) has endpoints s ∈ S and t ∈ T . A vertex v ∈ V (B) is called weak
if y(δ+

B(v)) > y(δ−B(v)) and strong otherwise. We denote by Γ+
s (v), Γ+

w(v) and
Γ+(v) the set of strong, weak, and all children of v ∈ V (B) in B, respectively.
Let t ∈ T , and let Γ+

w(t) = {w1, . . . , wk} be the weak children of t ordered such

that r(w1) ≤ · · · ≤ r(wk), where r(wi) := max
{

0, y(wi, t) −
∑

t′∈Γ+
w(wi)

y(wi, t
′)
}

.

Moreover, order Γ+
s (t) = {s1, . . . , sr} such that y(s1, t) ≥ · · · ≥ y(sr, t).

For i = 1, . . . , k − 1 consider a Pivot with a star centered at wi, routing

• at most 2y(wi, t
′) units of demand from wi to each weak child t′ of wi,

• y(wi, t
′) units from wi to each strong child t′ of wi, and

• r(wi) units from wi to Γ+
s (wi+1),

closing wi and opening Γ+(wi) ∪ Γ+
s (wi+1). All customers j with σ(j) = wi are

reassigned, and the estimated routing cost is at most

∑

t′∈Γ+
w(wi)

cwit′2y(wi, t
′) +

∑

t′∈Γ+
s (wi)

cwit′y(wi, t
′) + ctwi

r(wi)

+ctwi+1
r(wi+1) +

∑

t′∈Γ+
s (wi+1)

cwi+1t′y(wi+1, t
′),

as r(wi) ≤ r(wi+1) ≤
∑

t′∈Γ+
s (wi+1)

y(wi+1, t
′).

Case 1: t is strong. Then consider Pivot(wk, δ) and Pivot(t, δ), routing
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• y(wk, t
′) units of demand from wk to each child t′ of wk,

• y(wk, t) units from wk to t, and

• at most 2y(s, t) units from each strong child s of t to t,

closing wk and the strong children of t, opening the children of wk, and opening
t twice.

Case 2: t is weak and y(wk, t) + y(s1, t) ≥ ∑r
i=2 y(si, t). Then consider Pivot

operations with the stars centered wk, s1, and t, routing

• y(wk, t
′) units of demand from wk to each child t′ of wk,

• y(wk, t) units from wk to t,

• y(s1, t
′) units from s1 to each child t′ of s1,

• y(s1, t) units from s1 to t, and

• at most 2y(si, t) units from si to t for i = 2, . . . , r,

closing wk and the strong children of t, opening the children of wk and the children
of s1, and opening t three times.

Case 3: t is weak and y(wk, t) + y(s1, t) <
∑r

i=2 y(si, t). Then consider a Pivot

operation with the comet with center wk and tail (t, s1), routing

• y(wk, t
′) units of demand from wk to each child t′ of wk,

• y(wk, t) units from wk to t, and

• at most 2y(s1, t) units from s1 to t,

closing wk and s1 and opening t and the children of wk.
Moreover, consider two Pivot operations with the star centered at t, where

the first (second) one routes at most 2y(si, t) units of demand from si to t for
each odd (even) element i of {2, . . . , r}. This closes s2, . . . , sr, and opens t twice.

We collect all these Pivot operations for all t ∈ T . Then, altogether, we
have closed each s ∈ S once and opened each t ∈ T at most four times, with a
total estimated routing cost of at most 2

∑

{s,t}∈E(F ) csty(s, t), which is at most
2cS(x∗) + 2cS(x) by (23). If none of the operations has estimated cost less than
− ε

|F|c(x), we have −εc(x) ≤ −cF (x)+4cF (x∗)+2cS(x∗)+2cS(x), as required. 2
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7.5 The Performance Guarantee

From the previous results we can conclude:

Theorem 7.6 Let 0 < ε ≤ 1, and let x, x∗ be feasible solutions to a given in-
stance, and let cx(t, δ) > − ε

8|F|c(x) for t ∈ F and δ ∈ R+ and cx(A, δ) > − ε
8|F|c(x)

for all stars and comets A and δ ∈ ∆x
A. Then c(x) ≤ (1 + ε)(7cF (x∗) + 5cS(x∗)).

Proof: By Lemma 7.3 we have cS(x) ≤ cF (x∗)+ cS(x∗)+ ε
8
c(x), and by Lemma

7.5 we have cF (x) ≤ 4cF (x∗) + 2cS(x∗) + 2cS(x) + ε
8
c(x). Hence c(x) = cF (x) +

cS(x) ≤ 7cF (x∗) + 5cS(x∗) + ε
2
c(x), implying c(x) ≤ (1 + ε)(7cF (x∗) + 5cS(x∗)).

2

We improve the approximation guarantee of 7 + ε by a standard scaling tech-
nique (cf. Proposition 4.9) and obtain the main result of this section:

Theorem 7.7 (Vygen [2005]) For every ε > 0 there is a polynomial-time (
√

41+7
2

+
ε)-approximation algorithm for the Universal Facility Location Problem.

Proof: We may assume ε ≤ 1
3
. Let β :=

√
41−5
2

≈ 0.7016. Set f ′
i(z) := βfi(z)

for all z ∈ R+ and i ∈ F , and consider the modified instance.
Let x be any initial feasible solution. Apply the algorithms of Lemma 7.2 and

Lemma 7.4 with ε′ := ε
16|F| . They either find an Add or Pivot operation that

reduces the cost of the current solution x by at least ε
16|F|c(x), or they conclude

that the prerequisites of Theorem 7.6 are fulfilled. If x is the resulting solution, c′F
and cF denote the facility cost of the modified and original instance, respectively,
and x∗ is any feasible solution, then cF (x)+cS(x) = 1

β
c′F (x)+cS(x) ≤ 1

β
(6c′F (x∗)+

4cS(x∗)+ 3ε
8
c(x))+c′F (x∗)+cS(x∗)+ ε

8
c(x) ≤ (6+β)cF (x∗)+(1+ 4

β
)cS(x∗)+ 3ε

4
c(x) =

(6 + β)(cF (x∗) + cS(x∗)) + 3ε
4
c(x). Hence c(x) ≤ (1 + ε)(6 + β)c(x∗).

Each iteration reduces the cost by a factor of at least 1
1− ε

16|F|
, hence after

1
− log(1− ε

16|F|
)
< 16|F|

ε
iterations the cost reduces at least by a factor of 2 (note that

log x < x− 1 for 0 < x < 1). This implies a weakly polynomial running time. 2

In particular, as
√

41+7
2

< 6.702, we have a 6.702-approximation. This is the
best known approximation guarantee known today. We do not know whether the
performance guarantee is tight. It is an open problem to improve it (maybe by
using our new Pivot operation with other forests than stars and comets), and
to obtain a strongly polynomial approximation algorithm.

For the Capacitated Facility Location Problem, the performance
guarantee can be improved to 5.83, as Zhang, Chen and Ye [2004] showed. In this
case an additional operation, which corresponds to a Pivot on forests that are
the disjoint union of two stars, can be implemented in polynomial time, although
there is an exponential number of such forests.
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With this operation it is quite easy to modify the proof of Theorem 7.5 and
open each t ∈ T three instead of four times: the two Pivot operations in Case 1
can be replaced by one (with centers wk and t), and the three Pivot operations
in Case 2 and 3 can be replaced by two, the first one with centers at wk and t
(moving demand away from wk and from the si with i even to t), and the second
one with centers s1 and t (moving demand away from s1 and from the si with
i ≥ 3 odd to t). The rest of the proof is analogous. We omit the details and refer
to Zhang, Chen and Ye [2004].

8 Conclusions

In many practical applications the problems do not occur in the simple form
discussed here, but with additional constraints or different objectives. Exten-
sions that have received much interest recently include multilevel facility location
problems (Aardal, Chudak and Shmoys [1999], Bumb and Kern [2001], Ageev
[2002], Ageev, Ye and Zhang [2005], Plaxton [2003], Zhang [2004]), hierarchical
cache placement problems (Guha, Meyerson and Munagala [2000]), the single-
sink buy-at-bulk network design problem (Guha, Meyerson and Munagala [2001],
Talwar [2002], Goel and Estrin [2003], Gupta, Kumar and Roughgarden [2003])
and similar problems (Chekuri, Khanna and Naor [2001], Ravi and Sinha [2002],
Swamy and Kumar [2004], Maßberg and Vygen [2005]). Most of these are moti-
vated from various practical applications.

In many cases ideas developped for the basic problems (on which we concen-
trated in this paper) proved fruitful also for more complicated variants. In fact,
the main techniques that we used for the discrete facility location problems, LP
rounding, greedy and primal-dual algorithms, and local search, have been applied
successfully to many other combinatorial optimization problems (see Korte and
Vygen [2000]). However, the only technique that is currently known to yield
constant-factor approximations for capacitated facility location problems, local
search, is still a pure heuristic – without any reasonable performance guarantee –
for most other problems (cf. Aarts and Lenstra [2003]). Nevertheless it is widely
applied in practice.

It is fascinating that almost all results in this paper are less than ten years
old, although the problems have been studied long before. Research is still very
active in this area. Hopefully, this survey can help to stimulate further interesting
results.

Acknowledgement: This paper has arisen from lecture notes of a course given
at the University of Bonn in the winter term 2004/2005. I thank the students
who attended this course for many helpful remarks.
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