Resource Sharing
Jens Vygen

Hangzhou, April 2009

Min-max resource sharing
Instance

» finite sets R of resources and C of customers
» for each c € C:

» a convex set B; of feasible solutions (a block) and
» a convex resource consumption function g. : B, — RE

» given by an oracle function f; : RY — B. with
beB;
for all w € R and some ¢ € R, (a block solver).

Task

» Find a b, € B, for each ¢ € C with minimum congestion

max » (gc(be))r -
rer
ceC

Block solvers
A block solver is an oracle function f; : R — 5. with

w' Ge(fe(w)) < (1 + €0) Opte(w)

for all w € R and some ¢ € R, where

opto(w) == inf w'ge(b)

(o]

The block solver is called
» strong if ¢¢ = 0 or ¢y > 0 can be chosen arbitrary small
» weak otherwise

The block solver is called
» bounded if it can also optimize over

(b€ Be:ge(b) < pl}

for any given 1 > 0 (c € C).
» unbounded otherwise

Width

Let

= inf {maxz 9e(be))r : be € Be(c e C)}

ceC
(the “optimum congestion”), and

P max{1,sup{(gc/£b)) reRcec, besc}}

(the supremum is sometimes called the “width” of the problem)

In case of a bounded block solver, and in most applications, we
may assume p = 1 (“no bottleneck”).

Summary of results

min-max resource sharing block solver running time
Grigoriadis, Khachiyan [1994]| strong, bounded | O(e2|C|26)
Grigoriadis, Khachiyan [1996] | strong, unbounded | O(e~2|C||R|6)
Jansen, Zhang [2008] weak, unbounded | O(¢2|C||R|6)
Mdaller, V. [2008] weak, unbounded | O(¢2p[C|0)
Miiller, V. [2008] weak, bounded | O(e2|C|h)
fractional packing (all g; linear) block solver running time
Plotkin, Shmoys, Tardos [1995] * | strong, unbounded | O(e~2p|C|6)
Young [1995] weak, unbounded | O(¢2p[C|6)
Charikar et al. [1998] x* weak, unbounded | O(e2p|C|6)
Bienstock, lyengar [2004] — O(e'--)

Algorithms compute a (1 + €g + €)-approximate solution.
Running times for fixed ¢y > 0. Logarithmic terms omitted.

Entries with « refer to the feasibility version (A* = 1).

Weak duality

Lemma (Weak duality)
Letw € R be some cost vector withw™ 1 # 0. Then

Zcec Optc(w) <\

wTl -

Proof
Let (be € Be)cec be a solution with congestion A*. Then

> cec Opte(w) - Yceew Golbe) w' D e 9olbe) < w' AT *

w'l - w'l w'l - w'l

g

Bounding *

Lemma (Weak duality)
Letw € R} be some cost vector withw™1 # 0. Then

Zcec Optc(w) <\

w'l -

Corollary
Let bc = fc(]l) (C S C) and /\Ub = maXreR Zcec(gc(bc))r. Then

\ub ZreRZceC(gc(e))r . Docec OPL(1) . b
RiT+e) = [RI(+te) R <A< AP

O

Scaling and binary search

We know <\ U

T <
. Setj:=0.

. Scale g¥(b) := go(b) 2 2. Note that A*(0) < 1.

. Find a solution with congestion AV < (1 + ¢ + 1)*0) + 1.
. 1£A0) < %, then increment j and go to 2.

. Now ﬁ < X0 <1,

. Find a solution with congestion AU < (1 + ¢y + §)A*0)

(o276 I~ @0 BN\ BE

+ 5079
Lemma (Main Lemma)

Letd,0’ > 0. Suppose that * < 1.
Then we can compute a solution with congestion at most

(1+e+)N +46

O ((88")7"ICIop(1 + eo)? log R}

time, where 0 is the time for an oracle call.

Core algorithm

Input: An instance of the min-max resource sharing problem.
Output: A convex combination of vectors in B; for each ¢ € C.

. T4p(14+€)2In|R
Set t:= | #2Hol R,

Set o, :=0and w, := 1 foreach r € R.
Set x;p := 0 foreach cc Cand b € Be.
For p:=1to tdo:
For each c € C do:
AllocateResources(c).
Set Xgp = 1Xcp foreach c € C and b € Be.

Core algorithm: subroutine

Set ey = 4'2'(’]{+1£)}2.
Procedure AllocateResources(c):
Set be 1= fe(w).
Set Xebe = Xep, + 1.
Set a := a+ gc(be).
For each r € R with (gc¢(bc))r # 0 do:
Set w, 1= g%,

Proof of performance guarantee (sketch)

Lemma
Let (x,w) be the output of the algorithm, and let

ki)

and X := max,cr Ar. Then

2\ < —InZeQ”* = —In(w1).

rer

Proof: Since the functions g, are convex, we have for r € R:

1
A=Y Kool Gelb)r = & = —In(e) = —inw,

eot
ceC beBe 2

Proof of performance guarantee (sketch)

Lemma (Main Lemma)

Letd,0’ > 0. Suppose that * < 1.
Then the algorithm computes a solution with congestion at most

(1+e+)N+4".

Sketch of proof:
> Congestion is at most 7 In((w(")71).
» Initially, we have (w(®)™1 = |R].
» Short calculation yields
@®)T1 < (WP NTL + ¢ opty(wP),
ceC

where w() is the price vector at the end of the i-th phase
and ¢ := ex(1 4 (e — 2)pe2)(1 + o).

Proof of performance guarantee (sketch)

We had (wP)™1 < (wP)71 + € opty(wP).

ceC
opt (p)
By weak duality, e/zce(c (p?)i(;ld) < €)X <1, and we get
w
@) < g W)
— €
and thus
1y % t
(Tq < R e) o te A /(1= *)
@OE < Gy = RI(1+ 1255) < IRl .

Together with A < 1; In((w() 1), this proves the claim. O

Main result

Theorem

The presented algorithm computes a (1 + ¢ + €)-approximate
solution in O(|C|0p(1 + €9)?log |R|(log |R| 4+ ¢2(1 + €g))) time,
where 6 is the time for an oracle call.

(Miller, V. [2008])

Extensions for practical application:

» Most oracle calls not necessary; reuse previous result if still
good enough. Use lower bounds to decide

» Speed-up heuristics
» Randomized rounding to extreme points of the blocks
» Re-choose where rounding violates constraints

Application to global routing

Given a global routing graph (3D grid with millions of vertices).
» Customers = nets (sets of pins; roughly: sets of vertices)

» Resources = edge capacities, power consumption, yield
loss, timing constraints, ...

» Obijective function is transformed into a constraint

» Block = (convex hull of) set of Steiner trees for a net, with
space consumption for each edge

» Resource consumption is nonlinear (but convex) for yield
loss, timing, power consumption

» Block solver = approximation algorithm for the Steiner tree
problem in the global routing graph (with edge weights)

The algorithm in practice

» In practice, results are much better than theoretical
performance guarantees. Usually 10-20 iterations suffice.

» Only few upper bounds are violated; these are corrected
easily by rip-up and re-route.

» Detailed routing can realize the solution well, due to excellent
capacity estimations.

» Small integrality gap and approximate dual solution implies
that an infeasibility proof can be found for most infeasible
instances.

Congestion map of a difficult instance

110%

100%
94%
87%

76%

60%

30%

0%

22

CRB_PCL

RESEARCH | NSTI TUTE FCR DI SCRETE MATHEMATI CS, UNI VERSI TY OF BONN

Running time in practice

Chip IC| IR| 1 thread | 4 threads | 8 threads
A 478,946 894,377 | 0:15:49 0:04:25 0:02:37
B 786,368 | 1,949,245 | 1:18:13 0:23:09 0:14:29
C 529,966 | 1,091,339 | 0:48:40 0:13:19 0:08:20
D 959,163 | 2,794,166 | 1:12:26 0:21:00 0:10:49
E 3,590,647 | 20,392,657 | 1:16:07 0:23:27 0:15:09
F 5,340,123 | 23,606,915 | 0:33:25 0:12:22 0:08:51
G 7,039,094 | 22,891,145 | 2:32:48 0:46:12 0:29:08

Summary

» Min-max resource sharing is a very general problem

» We can solve it efficiently for millions of customers and
resources

» Yields provably near-optimum solutions for global routing
» Core global optimization of overall routing flow

Thank you!

	Resource sharing
	Application to Global Routing

