
Resource Sharing

Jens Vygen

Hangzhou, April 2009



Min-max resource sharing
Instance

I finite sets R of resources and C of customers
I for each c ∈ C:

I a convex set Bc of feasible solutions (a block) and
I a convex resource consumption function gc : Bc → RR+

I given by an oracle function fc : RR+ → Bc with

ω>gc(fc(ω)) ≤ (1 + ε0) inf
b∈Bc

ω>gc(b)

for all ω ∈ RR+ and some ε0 ∈ R+ (a block solver).

Task
I Find a bc ∈ Bc for each c ∈ C with minimum congestion

max
r∈R

∑
c∈C

(gc(bc))r .



Block solvers
A block solver is an oracle function fc : RR+ → Bc with

ω>gc(fc(ω)) ≤ (1 + ε0) optc(ω)

for all ω ∈ RR+ and some ε0 ∈ R+, where

optc(ω) := inf
b∈Bc

ω>gc(b)

The block solver is called
I strong if ε0 = 0 or ε0 > 0 can be chosen arbitrary small
I weak otherwise

The block solver is called
I bounded if it can also optimize over

{b ∈ Bc : gc(b) ≤ µ1}

for any given µ > 0 (c ∈ C).
I unbounded otherwise



Width

Let

λ∗ := inf

{
max
r∈R

∑
c∈C

(gc(bc))r : bc ∈ Bc(c ∈ C)

}
(the “optimum congestion”), and

ρ := max
{

1, sup
{

(gc(b))r

λ∗
: r ∈ R, c ∈ C,b ∈ Bc

}}
(the supremum is sometimes called the “width” of the problem)

In case of a bounded block solver, and in most applications, we
may assume ρ = 1 (“no bottleneck”).



Summary of results

min-max resource sharing block solver running time
Grigoriadis, Khachiyan [1994] strong, bounded Õ(ε−2|C|2θ)
Grigoriadis, Khachiyan [1996] strong, unbounded Õ(ε−2|C||R|θ)
Jansen, Zhang [2008] weak, unbounded Õ(ε−2|C||R|θ)
Müller, V. [2008] weak, unbounded Õ(ε−2ρ|C|θ)
Müller, V. [2008] weak, bounded Õ(ε−2|C|θ)

fractional packing (all gc linear) block solver running time
Plotkin, Shmoys, Tardos [1995] ∗ strong, unbounded Õ(ε−2ρ|C|θ)
Young [1995] weak, unbounded Õ(ε−2ρ|C|θ)
Charikar et al. [1998] ∗ weak, unbounded Õ(ε−2ρ|C|θ)
Bienstock, Iyengar [2004] — Õ(ε−1 · · · )

Algorithms compute a (1 + ε0 + ε)-approximate solution.
Running times for fixed ε0 ≥ 0. Logarithmic terms omitted.
Entries with ∗ refer to the feasibility version (λ∗ = 1).



Weak duality

Lemma (Weak duality)
Let ω ∈ RR+ be some cost vector with ω>1 6= 0. Then∑

c∈C optc(ω)

ω>1
≤ λ∗.

Proof
Let (bc ∈ Bc)c∈C be a solution with congestion λ∗. Then∑

c∈C optc(ω)

ω>1
≤
∑

c∈C ω
>gc(bc)

ω>1
=
ω>
∑

c∈C gc(bc)

ω>1
≤ ω>λ∗1

ω>1
= λ∗

�



Bounding λ∗

Lemma (Weak duality)
Let ω ∈ RR+ be some cost vector with ω>1 6= 0. Then∑

c∈C optc(ω)

ω>1
≤ λ∗.

Corollary
Let bc := fc(1) (c ∈ C) and λub := maxr∈R

∑
c∈C(gc(bc))r . Then

λub

|R|(1 + ε0)
≤
∑

r∈R
∑

c∈C(gc(bc))r

|R|(1 + ε0)
≤
∑

c∈C optc(1)

|R|
≤ λ∗ ≤ λub .

�



Scaling and binary search
We know λub

|R|(1+ε0)
≤ λ∗ ≤ λub .

1. Set j := 0.
2. Scale g(j)

c (b) := gc(b) 2j

λub . Note that λ∗(j) ≤ 1.
3. Find a solution with congestion λ(j) ≤ (1 + ε0 + 1

4)λ∗(j) + 1
4 .

4. If λ(j) ≤ 1
2 , then increment j and go to 2.

5. Now 1
5(1+ε0)

≤ λ∗(j) ≤ 1.
6. Find a solution with congestion λ(j) ≤ (1 + ε0 + ε

6)λ∗(j) + ε
6(1+ε) .

Lemma (Main Lemma)
Let δ, δ′ > 0. Suppose that λ∗ ≤ 1.
Then we can compute a solution with congestion at most

(1 + ε0 + δ)λ∗ + δ′

in
O
(
(δδ′)−1|C|θρ(1 + ε0)

2 log |R|
)

time, where θ is the time for an oracle call.



Core algorithm

Input: An instance of the min-max resource sharing problem.
Output: A convex combination of vectors in Bc for each c ∈ C.

Set t :=
⌈

4ρ(1+ε0)
2 ln |R|

δ′min{1,δ}

⌉
.

Set αr := 0 and ωr := 1 for each r ∈ R.
Set xc,b := 0 for each c ∈ C and b ∈ Bc .
For p := 1 to t do: (perform t phases)

For each c ∈ C do:
AllocateResources(c).

Set xc,b := 1
t xc,b for each c ∈ C and b ∈ Bc . (normalize)



Core algorithm: subroutine

Set ε2 := min{1,δ}
4ρ(1+ε0)2 .

Procedure AllocateResources(c):
Set bc := fc(ω). (call oracle)
Set xc,bc := xc,bc + 1.
Set α := α+ gc(bc). (update resource consumption)
For each r ∈ R with (gc(bc))r 6= 0 do:

Set ωr := eε2αr . (update prices)



Proof of performance guarantee (sketch)
Lemma
Let (x , ω) be the output of the algorithm, and let

λr :=
∑
c∈C

gc

∑
b∈Bc

xc,bb


r

and λ := maxr∈R λr . Then

λ ≤ 1
ε2t

ln
∑
r∈R

eε2tλr =
1
ε2t

ln
(
ω>1

)
.

Proof: Since the functions gc are convex, we have for r ∈ R:

λr ≤
∑
c∈C

∑
b∈Bc

xc,b(gc(b))r =
αr

t
=

1
ε2t

ln (eε2αr ) =
1
ε2t

lnωr

�



Proof of performance guarantee (sketch)
Lemma (Main Lemma)
Let δ, δ′ > 0. Suppose that λ∗ ≤ 1.
Then the algorithm computes a solution with congestion at most

(1 + ε0 + δ)λ∗ + δ′ .

Sketch of proof:

I Congestion is at most 1
ε2t ln

(
(ω(t))>1

)
.

I Initially, we have (ω(0))>1 = |R|.
I Short calculation yields

(ω(p))>1 ≤ (ω(p−1))>1 + ε′
∑
c∈C

optc(ω
(p)),

where ω(i) is the price vector at the end of the i-th phase
and ε′ := ε2(1 + (e − 2)ρε2)(1 + ε0).



Proof of performance guarantee (sketch)

We had (ω(p))>1 ≤ (ω(p−1))>1 + ε′
∑
c∈C

optc(ω
(p)).

By weak duality, ε′
∑

c∈C optc(ω(p))

(ω(p))>1
≤ ε′λ∗ < 1, and we get

(ω(p))>1 ≤ 1
1− ε′λ∗

(ω(p−1))>1

and thus

(ω(t))>1 ≤ |R|
(1− ε′λ∗)t = |R|

(
1 +

ε′λ∗

1− ε′λ∗

)t

≤ |R|etε′λ∗/(1−ε′λ∗) .

Together with λ ≤ 1
ε2t ln

(
(ω(t))>1

)
, this proves the claim. �



Main result

Theorem

The presented algorithm computes a (1 + ε0 + ε)-approximate
solution in O(|C|θρ(1 + ε0)

2 log |R|(log |R|+ ε−2(1 + ε0))) time,
where θ is the time for an oracle call.
(Müller, V. [2008])

Extensions for practical application:
I Most oracle calls not necessary; reuse previous result if still

good enough. Use lower bounds to decide
I Speed-up heuristics
I Randomized rounding to extreme points of the blocks
I Re-choose where rounding violates constraints



Application to global routing

Given a global routing graph (3D grid with millions of vertices).
I Customers = nets (sets of pins; roughly: sets of vertices)
I Resources = edge capacities, power consumption, yield

loss, timing constraints, ...
I Objective function is transformed into a constraint
I Block = (convex hull of) set of Steiner trees for a net, with

space consumption for each edge
I Resource consumption is nonlinear (but convex) for yield

loss, timing, power consumption
I Block solver = approximation algorithm for the Steiner tree

problem in the global routing graph (with edge weights)



The algorithm in practice

I In practice, results are much better than theoretical
performance guarantees. Usually 10–20 iterations suffice.

I Only few upper bounds are violated; these are corrected
easily by rip-up and re-route.

I Detailed routing can realize the solution well, due to excellent
capacity estimations.

I Small integrality gap and approximate dual solution implies
that an infeasibility proof can be found for most infeasible
instances.



Congestion map of a difficult instance

CRB_PCL

RESEARCH INSTITUTE FOR DISCRETE MATHEMATICS, UNIVERSITY OF BONN

0%

30%

60%

76%

87%

94%

100%

110%



Running time in practice

Chip |C| |R| 1 thread 4 threads 8 threads
A 478,946 894,377 0:15:49 0:04:25 0:02:37
B 786,368 1,949,245 1:18:13 0:23:09 0:14:29
C 529,966 1,091,339 0:48:40 0:13:19 0:08:20
D 959,163 2,794,166 1:12:26 0:21:00 0:10:49
E 3,590,647 20,392,657 1:16:07 0:23:27 0:15:09
F 5,340,123 23,606,915 0:33:25 0:12:22 0:08:51
G 7,039,094 22,891,145 2:32:48 0:46:12 0:29:08



Summary

I Min-max resource sharing is a very general problem
I We can solve it efficiently for millions of customers and

resources
I Yields provably near-optimum solutions for global routing
I Core global optimization of overall routing flow



Thank you!


	Resource sharing
	Application to Global Routing

