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Abstract

The design of very large scale integrated (VLSI) chips is an exciting
area of applying mathematics, posing constantly new challenges.

We present some important and challenging open problems in vari-
ous areas of chip design. Although the problems are motivated by chip
design, they are formulated mathematically; understanding and solving
them does not require any knowledge of chip design. We give some partial
results and argue why a full resolution of one of the problems could result
in an advance of the state of the art in algorithms for chip design.

Introduction

This paper is dedicated to Laci Lovász on the occasion of his 60th birthday. We
have learned a lot from Laci about combinatorial problems and how to solve
them. However, the paper presents mainly open problems and challenges the
reader to solve them.

Chip design is one of the most interesting and important application areas
of mathematics, in particular discrete mathematics. Many different mathemat-
ical techniques have been applied in chip design, and a lot of practical design
problems have led to new interesting theoretical results. Still there are many
challenging open problems, some of which known for decades, others raised only
recently because of technological advances.

For many years we have been designing algorithms for chip design that are
based on mathematics as much as possible. The resulting BonnTools (Korte,
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Rautenbach and Vygen [2007]) are widely used in industry, but also competing
industrial tools include more and more advanced algorithms. Nevertheless we
are convinced that there is still a lot of room for improvement. We try to give
several examples in this paper.

We also hope to stimulate more theoretical research that is relevant for prac-
tical problems. All examples in this paper are defined rigorously as abstract
mathematical problems, which can be understood without any knowledge in
chip design. Nevertheless we also mention the background briefly and argue
why these problems are important.

Almost all problems arising in chip design are NP-hard. Sometimes it is not
even clear whether exponential-time algorithms, or polynomial-time approxima-
tion algorithms exist. Nevertheless one can prove interesting positive results, for
example by considering important special cases or by decomposing a problem
into well-solved subproblems.

The design of a chip consists of many steps, which are of course not indepen-
dent of each other. The main steps are logic synthesis, floorplanning, placement,
timing optimization, clock tree design, and routing (roughly in this order). Each
of these steps is decomposed further into sub-tasks. For example, routing is split
into global and detailed routing; timing optimization comprises at least fanout
tree design and gate sizing, etc. Most of these tasks will be explained briefly in
later sections. For a detailed decscription we refer to Korte, Rautenbach and
Vygen [2007].

Let us mention one of the few examples where an important problem can
be solved optimally in polynomial time, and fast enough to be used in prac-
tice: clock skew scheduling. While traditionally designers were aiming for zero
skew clock trees, i.e. simultaneously switching storage elements, this is far from
optimal. By optimizing the arrival times one can obtain smaller cycle times
and thus higher frequencies. Modelling the timing graph, where arcs correspond
to signal propagations, as a digraph G with delays d : E(G) → R, and given
a subset F ⊆ E(G) and a threshold Θ ∈ R, the task is to find arrival times
π : V (G) → R with π(x) + d(e) ≤ π(y) for e = (x, y) ∈ E(G) \ F such that the
vector of relevant slacks

(min{Θ, π(y)− π(x)− d(e)})e=(x,y)∈F ,

after sorting entries in non-decreasing order, is lexicographically maximal. The
edges in F are normally those incident to storage elements; their worst slack will
eventually determine what frequency can be achieved.
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Figure 1: The effect of clock skew scheduling on the Apple G5 system controller
(Held et al. [2003]). The left-hand side shows the timing result with zero skew,
the right-hand side with optimal arrival times. This improved the speed (i.e.,
cycle time) by 27%. Placement (top) and slack histograms (showing the number
of slacks in certain intervals) are colored in the same way: signals at red modules
arrive much too late, while signals at blue modules have positive slack (i.e., arrive
in time).
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This problem can be solved in O(mn+n2 log n) time (Albrecht et al. [2002]),
where n = |V (G)| and m = |E(G)|. For reasonable thresholds Θ it runs very
fast in practice. See Held [2001], Vygen [2006], and Albrecht [2006] for general-
izations and implementation aspects. See Figure 1 for an example.

Held et al. [2007] survey this and many other results that we achieved. The
present paper complements this with a focus on unsolved problems.

There are well-known open problems that we do not list although they are
very important for chip design (and many other applications). Examples are
the questions what is the fastest running time of an algorithm for fundamental
combinatorial optimization problems (such as the minimum cost flow problem),
and of course whether P = NP. These problems have been studied for decades
and seem to be very hard.

The rest of this paper consists of ten sections, each with a challenging open
problem.

1 Floorplanning

Motivation

At an early design stage designers have a target chip area, i.e. a rectangle. They
also have a list of rectangular objects (modules or macros) and their intercon-
nection (the modules have pins, and sets of pins that must be connected are
called nets). The task is to place these objects without overlaps such that an
estimate of the interconnect length is minimized. This is called floorplanning.
In hierachical design the number of objects is relatively small (about 20 to 200),
as each object represents either a large memory array or a logic macro (which
itself consists of many small objects). Another approach (flat design) is to deal
with millions of small objects directly. Although the problem formulation is es-
sentially the same, completely different approaches are needed due to the orders
of magnitude (cf. Problem 2).

Instance

• a finite set M (of modules or macros)

• a rectangular chip area A(2) = [0, xmax]× [0, ymax]

• an outline A(m) = [0, w(m)]× [0, h(m)] ⊆ A(2) for m ∈ M
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• a finite set N of nets. Each net is a finite set with at least two elements;
these elements are called pins

• an assignment γ(p) ∈ M
.
∪ {2} and an offset (x(p), y(p)) for each pin p

(the pins p with γ(p) = 2 are fixed, e.g. I/O-ports). (M,N , γ) is called a
netlist; it can be regarded as a hypergraph with a special vertex 2

Task

Compute

• a placement (x, y) : M → A(2) such that (x(m) + w(m), y(m) + h(m)) ∈
A(2) for each m ∈ M , and for each m, m′ ∈ M at least one of the following
conditions holds: x(m) + w(m) ≤ x(m′) or x(m′) + w(m′) ≤ x(m) or
y(m) + h(m) ≤ y(m′) or y(m′) + h(m′) ≤ y(m)

• such that
∑

N∈N (maxp∈N(x(γ(p)) + x(p)) − minp∈N(x(γ(p)) + x(p)) +
maxp∈N(y(γ(p)) + y(p)) − minp∈N(y(γ(p)) + y(p))) is minimum, where
x(2) := y(2) := 0 (this is called the bounding box netlength)

or decide that no solution exists.

Challenge

Find an O(k!4kp(k, |N |, |P |))-algorithm for this problem, where k = |M | and p
is a polynomial.

What is Known

The problem to decide whether a feasible placement exists is strongly NP-
complete as it includes bin packing.

Suppose that we know which of the four conditions shall be satisfied for each
pair of macros. Then one can formulate the problem as two separate linear
programs (one for x- and one for y-coordinates), by adding variables repre-
senting the coordinates of the bounding box. These linear programs are du-
als of uncapacitated minimum cost flow instances and can thus be solved in
O(n log n(m + n log n)) time (Orlin [1993]), where n = |M |+ |N | and m = |P |.
This was noted first by Cabot, Francis and Stary [1970].

5



Of course one can enumerate all 4(k
2) possibilities, but this is too slow and

many of these contradict each other. Murata et al. [1995] proposed a more
efficient representation of the solution space by so-called sequence pairs: given
any two permutations π, ρ of M , we require that m is to the west (south, north,
east) of m′ if m precedes m′ in π and ρ (in π but not in ρ, in ρ but not in π,
neither in π nor in ρ). They showed that for every feasible placement there is a
sequence pair implying constraints that are satisfied for this placement. Hence
one needs to enumerate only (k!)2 combinations. The resulting running time of
O((k!)2n log n(m + n log n)) seems to be the best known bound today.

Even with branch-and-bound techniques instances with k ≥ 15 currently
cannot be solved optimally. For larger instances local search heuristics (such
as simulated annealing) based on these representations have been proposed and
used in practice. There are hundreds of papers on floorplanning heuristics in the
engineering literature, but there is no substantial progress in exact algorithms.

Other representations are more concise than sequence pairs but can only
represent compactified placements, where no object can be moved downwards
or to the left without destroying feasibility. The most efficient ones are O-trees
(Guo, Cheng and Yoshimura [1999], Takahashi [2000]) and B∗-trees (Chang et

al. [2000]), both with k!Ck ≈ (k−1)!4k
√

πk
combinations, where Ck = (2k)!

k!(k+1)!
is the

k-th Catalan number. However, it is not clear how to use them for finding a
placement with minimum bounding box netlength.

If we just want to find a feasible solution or decide that none exists, the B∗-
representation together with the binary tree enumeration algorithm of Solomon
and Finkel [1980] does the job in O((k−1)!4k

√
k) time. Polynomial-time approx-

imation algorithms in special cases where feasibility is trivial will be discussed
in Problem 2.

Extensions

• Macros can often be flipped horizontally and/or vertically. In rare cases
they can also be rotated, but normally not as this would require an adap-
ation of the routing structure on top of the macro.

• Some areas of the chip may be forbidden (or, equivalently, some macros
are pre-placed and must not be moved).

• Some of the objects may in fact be soft macros (also called random logic
macros, RLMs). They come with an (estimated) area but no fixed aspect
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ratio. They have pins, but no pin locations. Soft macros correspond to
units that are not designed yet and will be part of the chip. For each of
them one needs to choose an aspect ratio and assign its pins to locations
within its outline. Then they can be placed just as hard macros. The
aspect ratio can be subject to lower and upper bounds or part of the
objective function (approximately squarish outlines are often preferable).
Ibaraki and Nakamura [2006] observed that there is a finite algorithm even
in the case of soft macros by showing that this is a convex programming
problem.

• Some soft macros may actually appear several times on a chip. In this case
all realizations, i.e. aspect ratios and pin locations must be the same. In
other words, for each group of identical soft macros one needs to choose a
realization as hard macro first, and then place copies of this hard macro.
The advantage is that this soft macro needs to be designed and checked
only once and can be plugged in at several places on the chip.

Importance

Even an algorithm which can handle, say, twenty macros, would be useful. It
could be used as part of a heuristic which decomposes larger instances and solves
sub-instances optimally. Moreover, many practical instances are easy except for
a specific local area where the problem may be very hard, but involves only
relatively few macros.

Currently, due to the lack of good algorithms, floorplanning involves a lot of
manual work.

2 Lower Bounds for Placement

Motivation

Placement is one of the most important tasks in chip design, but also (as shown
in Problem 1) one of the hardest. Although studied for many decades, not much
is known theoretically. In fact, even simplified formulations of the placement
problem contain the notoriously hard quadratic assignment problem as special
case. In practice the most successful approaches heuristically combine optimally
solved subproblems; see e.g. Brenner, Struzyna and Vygen [2008]. But almost
nothing is known about how far from optimal they are.
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Instance

• a graph G (whose vertices are called modules or cells and whose edges are
called nets),

• an array of feasible locations A = {1, . . . , xmax} × {1, . . . , ymax}

Task

Compute

• a placement π : V (G) → A satisfying π(v) 6= π(w) for all v, w ∈ V (G)
with v 6= w

• such that

(a)
∑

{v,w}∈E(G) |π(v)− π(w)| is minimum.

(b)
∑

{v,w}∈E(G)(π(v)− π(w))2 is minimum.

Challenge

Find an algorithm which computes the optimum value of (a) or (b) up to a
constant factor, or even an O(log |V (G)|)-factor, in polynomial time.

What is Known

The best known approximation algorithm for (a) has a performance guarantee
of O(log |V (G)| log log |V (G)|) (Even et al. [2000]). In the one-dimensional case
(ymax = 1) this is the famous optimum linear arrangement problem, for which
an O(

√
log |V (G)| log log |V (G)|)-factor approximation algorithm was found by

Charikar et al. [2006] and Feige and Lee [2007]. However, the optimum linear
arrangement problem is not known to be MAXSNP-hard (but see Ambühl, Mas-
trolilli and Svensson [2007]). If some areas are forbidden, the problem has no
constant-factor approximation algorithm (Queyranne [1986]).

Case (b) might be easier, but there is no positive result either. However, there
are interesting connections to random walks and eigenvectors of the Laplacian
of G (Vygen [2007], Spielman [2007]), which could potentially help.

In practice, there are only two techniques to compute lower bounds for large
instances (which can be combined). The first one is to consider each net sepa-
rately and assume the cells of this net to be placed as closely together as possible.
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Figure 2: Quadratic placement for the same chip as in Figure 1. The cells are
colored red. Most cells are tiny and lie close to the center of the chip. Thus the
placement is far from being legal.
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The second one relaxes the problem by ignoring the constraint that no two cells
can be placed at the same position. Assuming that some pins are fixed or some
cells are preplaced, which is often the case in practice, this relaxation yields a
positive lower bound, but a very weak one, in particular for (a). The relaxation
for (b), called quadratic placment, is a basic ingredient of many placement tools
(Brenner and Vygen [2008]). See Figure 2 for an example.

Extensions

• To be really useful the algorithm should be fast enough to handle millions
of cells.

• In practice the problem is more complex. Cell sizes vary (as in Problem
1), although most cells have the same height (standard cells) and are to
be arranged in rows. Exceptions are macros where different problems arise
(see Problem 1). Even the problem to decide whether a feasible solution
exists is strongly NP-hard. But in practice it is very easy to find a feasible
solution because a substantial portion of the available area is not used.

Normally 99% of the cells are small (their height is uniform and their width
varies by about a factor of ten), and different cell sizes typically mix in a
good placement. Moreover, many cell sizes are actually determined only
after placement (by a procedure called gate sizing, which chooses one out
of several logically equivalent implementions for each cell). Hence it does
not seem to be essential to work with non-uniform cell sizes.

• Pre-placed macros (as output of floorplanning; cf. Problem 1) or, equiva-
lently, forbidden areas, also make the problem harder.

• In practice we have a hypergraph rather than a graph. Again, the vertices
are cells that are to be placed and hyperedges are nets encoding the in-
formation that its pins need to be connected. More precisely, we have a
netlist as in Problem 1. The pin offsets are rather small and can be ignored
except at a very detailed level, but fixed pins really change the problem —
just as pre-placed macros or forbidden areas do. But the number of fixed
pins is typically quite small, and in some cases, where the I/O-ports are
not yet placed, zero.

It is common practice to represent hyperedges of cardinality more than two
(multi-terminal nets) by a set of edges (two-terminal nets), e.g. a clique
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(cf. Brenner and Vygen [2001]).

• Our formulation ignores important aspects like routing congestion and
timing constraints. Nevertheless just minimizing netlength has proved a
very useful model in practice.

Importance

Although our problem formulation is a radical simplification, it is the best ap-
proximation of the placement problem where we can hope for a positive solution
even if P 6= NP.

It is not immediately clear how a positive answer would impact design prac-
tice. But the current status is that we have essentially no means to evaluate
how close to optimum the placements that we compute are. Any progress here
would be extremely interesting.

3 Legalizing a Placement

Motivation

Placement is usually divided into two subtasks: global placement and legaliza-
tion. After global placement (cf. Problem 2), the size of many cells is changed
and additional cells (in particular repeaters; cf. Problem 9) are added. Then the
placement needs to be legalized without moving any cell too far. The (weighted)
sum of quadratic movement is a good measure of legalization quality.

Instance

• an array of feasible locations A = {1, . . . , xmax} × {1, . . . , ymax}

• a set C of cells to be placed, with |C| ≤ |A|

• an initial placement (x, y) : C → A

Task

Compute

11



• a legal placement (x̄, ȳ) : C → A, i.e. one with x̄(c) 6= x̄(c′) or ȳ(c) 6= ȳ(c′)
for c, c′ ∈ C with c 6= c′,

• such that ∑
c∈C

(|x̄(c)− x(c)|+ |ȳ(c)− y(c)|)2

is minimum.

Challenge

Find an o(|C|3) algorithm for this problem.

What is Known

This is a special case of the well-known linear assignment problem, which can
be solved in O(|A|3) time even if the cost of assigning an element of C to an
element of A is arbitrary (see, e.g., Korte and Vygen [2008]).

It seems that no better algorithms are known for the special case. However,
for linear movement costs (instead of quadratic) one can reduce the problem
to an instance of the minimum cost flow problem, where the underlying graph
is the two-dimensional grid graph given by A (with edges connecting nodes of
Manhattan distance 1, oriented in both directions). Unit costs, infinite capaci-
ties, and balance values defined by b(a) := |{c ∈ C : (x, y)(c) = a}|−1 for a ∈ A
complete the instance. An integral minimum cost flow exists and can be realized
by moving cells. This yields an O(|A|2 log2 |A|)-algorithm for the variant with
linear movement costs. It seems plausible that |A| can be replaced by |C| in this
time bound as locations that are never used do not require any computation.

This minimum cost flow approach has been used a lot in practice (Vygen
[1998], Brenner and Vygen [2004]). Of course, when used as a heuristic for
minimizing quadratic movement costs, the flow cannot be realized arbitrarily as
it is better to move many cells a little rather than one cell far.

Extensions

• Typically some locations are pre-occupied by large macros and must not
be used.
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• Some cells are more important (because of timing constraints); so one has
weights w : C → R+ and should minimize the weighted sum of squared
movements.

• Cells have different sizes, although in a typical legalization instance they
all have the same height. But even with varying widths the problem to
decide whether any feasible solution exists is strongly NP-hard. In practice
this is not an issue, as rarely more than 90% of the chip area is used, and as
the widths are typically small integer multiples of some minimum width.

Nevertheless, with varying cell widths the problem becomes harder and can
probably no longer be formulated as an assignment problem. Still Brenner
and Vygen [2004] use the above minimum cost flow approach, construct an
appropriate (more sophisticated) minimum cost flow instance, and solve
knapsack problems to realize the flow. This paper also proposes an integer
programming formulation whose LP relaxation provides reasonable lower
bounds in practice.

Importance

Placement legalization is a key task in chip design and an increasing challenge
with progressing technology. Poor legalization makes it hard to find a solution
satisfying all timing constraints. A solution to the above problem formulation,
although not capturing different cell widths, would be a significant step towards
a practical and provably near-optimal solution.

4 Steiner Trees Minimizing Elmore Delay

Motivation

On a chip there are millions of signals that are generated at a certain place
(the source) and must be transmitted to several destinations (sinks). Each net
contains one source and at least one sink. The elements of a net need to be
connected by a network of copper wires, which can be approximated well by
a rectilinear Steiner tree (ignoring the third dimension). However, a shortest
Steiner tree is often not best possible to meet tight constraints on the delay of
the signal from the source to each sink.
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To estimate the delay from the source to a sink we use the popular Elmore
delay model (Elmore [1948]) which is relatively simple and accurate (see below).
To account for different timing constraints we have an extra additive term for
each sink.

Instance

• a source s ∈ R2

• a nonempty finite set of sinks T ⊂ R2

• a delay adder at ∈ R for t ∈ T

• a source resistance rs > 0

• a sink capacitance ct > 0 for each t ∈ T

• the capacitance c > 0 and resistance r > 0 of a wire per unit length.

Task

Compute

• a rectilinear Steiner tree Y for {s}∪T , oriented as an arborescence rooted
at s whose vertices are elements of R2

• such that
max
t∈T

(at + ED(s, t))

is minimum,

where for t ∈ T the Elmore delay from s to t is

ED(s, t) := rsCs +
∑

e=(v,w)∈E(Y[s,t])

r||v − w||1
( c

2
||v − w||1 + Cw

)
,

Y[s,v] denotes the path from s to v ∈ V (Y ) in Y , and

Cv :=
∑

e=(x,y):v∈V (Y[s,x])

c||x− y||1 +
∑

t∈T :v∈V (Y[s,t])

ct.
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Challenge

Find a finite algorithm for this problem.

What is Known

The problem is known to be NP-hard (Boese et al. [1994]). For |T | = 1 it is
trivial; a shortest path does the job. For |T | ≤ 3 the problem can be solved in
constant time (Kadodi [1999], Peyer [2000]).

But even for |T | = 2 there are instances in which the only optimal solution
is not part of the Hanan grid, the grid of horizontal and vertical lines induced
by the source and the sinks (Boese et al. [1994]). This is not true for the variant
in which

∑
t∈T atED(s, t) is minimized for weights at > 0 (t ∈ T ); hence this

variant can be solved in exponential time. See also Cong et al. [1996] and Kahng
and Robins [1995] for other variants.

Extensions

• Actually we can choose the width of any wire (within a given range) and
have several (currently up to 10) routing planes with different charac-
teristics available. Routing planes normally have alternating preference
directions (horizontal/vertical).

Wider wires have smaller resistance but larger capacitance per unit length
(and they consume more space). Wires on upper planes are often bet-
ter, but the pins (source and sinks) are usually on the lower planes and
the resistance of vias (metal contacts connecting adjacent planes) are not
negligible.

In practice, most of the nets are realized by a set of wires almost all of
which (except short ones for pin access) have the same width and lie on
two adjacent planes (one horizontal and one vertical) with similar electrical
properties. Therefore the above planar simplification is meaningful.

• Our formulation ignores routing blockages. Sometimes there are significant
blockages (in particular on top of macros) that must be avoided. But in
most cases there are only small blockages (mostly due to the power supply)
which can be neglected here.
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• Pins are not single points but sets of metal shapes. Consequently we have
a group Steiner tree problem. But since each pin spans only a small area,
this is less important.

• The Elmore delay is the most accurate model with such a simple descrip-
tion. More accurate models depend on more parameters (in particular the
so-called slew rate: the average rate of voltage changes); we do not go into
details here.

• In some cases, in particular for clock networks, signals must not arrive too
early either. In this case a reasonable objective function combines latency
(maximum delay) and skew (maximum difference of delays), such as

(1 + α) max
t∈T

(at + ED(s, t))−min
t∈T

(at + ED(s, t))

for some α > 0. This variant is also unsolved.

Importance

The task to transmit a signal as fast as possible to a given set of destinations is a
fundamental problem in chip design. Although shortest rectilinear Steiner trees
are often good enough, one would of course like to solve such basic sub-tasks
optimally.

5 Resource Sharing and Multiflows

Motivation

Routing is also a major task in chip design. Millions of nets have to be connected
by wires, which must satisfy many rules. Routing is typically split into global
routing and detailed routing. In global routing we determine a corridor for each
net which restricts the solution space explored in detailed routing.

The simplest formulation of the global routing problem asks for packing
Steiner trees for given terminal sets in a three-dimensional grid graph with edge
capacities. In the case of two-terminal nets this is an integer multicommodity
flow problem. But besides routing space (reflected by edge capacities) there are
other resources that must be shared between nets, such as time (for signal delay),
and space for buffers (needed for repowering signals; cf. Problem 9). A general
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resource sharing problem models all this and does not seem to be much harder
than a standard multicommodity flow formulation. The common approach is to
solve the fractional relaxation first and use randomized rounding for obtaining
an integral solution.

Instance

• a finite set R of resources

• a finite set C of customers

• a number ur > 0 specifying how many units of resource r ∈ R are available

• for each customer c ∈ C an implicitly given convex set Ac ⊆
∏

r∈R[0, ur]
of feasible resource allocation vectors (satisfying customer c). We assume
an oracle for computing a function fc : RR

+ → Ac which approximately
minimizes linear functions over Ac: for a customer c ∈ C and a price vector
ω ∈ RR

+ we require that ω>fc(ω) ≤ (1 + ε0) optc(ω), where optc(ω) :=
mina∈Ac ω>a and ε0 ≥ 0 is a constant

Task

Compute

• a feasible resource allocation vector for each customer

• such that the maximum relative utilization (or congestion) of all resources
is minimized:

min
(ac∈Ac)c∈C

max
r∈R

∑
c∈C(ac)r

ur

Challenge

Find an algorithm which computes an (1 + ε0 + ε)-approximate solution in
O∗(1

ε
|C|γ) time, for any ε > 0, where γ denotes the time for an oracle call

and the O∗-notation suppresses logarithmic terms.
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What is Known

If ε0 can be chosen arbitrarily small, this is a special case of the equivalence of
weak optimization and weak separation (Grötschel, Lovász and Schrijver [1988]).

Combinatorial approximation algorithms (some of which assume ε0 = 0) were
proposed by Plotkin, Shmoys and Tardos [1995], Grigoriadis and Khachiyan
[1996], Garg and Könemann [2007], and Jansen and Zhang [2008], based on
earlier similar algorithms for the special case of multicommodity flows. All
algorithms have a dependence on ε which is quadratic or worse. Müller and
Vygen [2008] (see Albrecht [2001] and Vygen [2004] for special cases) found an
O( 1

ε2
|C|γ ln2 |R|)-algorithm. Bienstock and Iyengar [2006] showed how to reduce

the term from 1
ε2

to 1
ε
, but by increasing the dependence on other parameters.

It is not clear whether these techniques can be combined.

Extensions

• All known algorithms also compute an approximate dual solution. This
can be useful in particular if the routing instance turns out to be infeasible.

• In practice one is of course interested in an integral solution. The corre-
sponding problem includes the edge-disjoint paths problem and is of course
NP-hard. Randomized rounding works quite well unless ar

ur
is large for some

r ∈ R, c ∈ C and a ∈ Ac. However, this two-stage approach (first solve
the fractional relaxation approximately, then apply randomized rounding)
may not be optimal.

Importance

Sharing resources optimally is a fundamental problem with numerous appli-
cations. In chip design it models global routing very well and can also handle
various constraints and objectives that make global routing today much different
from just packing Steiner trees subject to edge capacities. For example, Vygen
[2004] and Müller [2006] showed how to model timing constraints and even man-
ufacturing yield by resource constraints. The full value of this approach is yet
to be explored.
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6 Shortest Paths in Grids

Motivation

The main sub-task in detailed routing is to connect two sets of metal shapes by
a set of wires of minimum total length. Each of these sets of shapes can be a
pin or a previously routed set of wires connecting some pins. The problem can
be modelled as a shortest path problem in a three-dimensional grid graph and
solved by Dijkstra’s algorithm (Dijkstra [1959]).

The main problem is that we need to find more than 20 million paths, and
the grid graph can have more than 100 billion vertices. Although the considered
subgraphs for each net are restricted as a result of global routing, this remains
an enormous computational challenge.

Routing layers normally have alternating preference directions (horizontal/vertical).
Edges orthogonal to the preference directions, edges corresponding to vias (con-
necting adjacent planes), and edges on lower metal planes have higher cost to
account for waste of space, effects on manufacturing yield, and electrical prop-
erties. See Figure 3 for an example.

Instance

• positive integers xmax, ymax, and zmax

• for each odd z ∈ {1, . . . , zmax} and each y ∈ {1, . . . , ymax} an integer i ≥ 0
and a list of coordinates 1 ≤ x1 < x2 < · · · < x2i−1 < x2i ≤ xmax defining i
intervals {(x1, y, z), (x1 + 1, y, z), . . . , (x2, y, z)}, . . . , {(x2i−1, y, z), (x2i−1 +
1, y, z), . . . , (x2i, y, z)}

• for each even z ∈ {1, . . . , zmax} and each x ∈ {1, . . . , xmax} an integer i ≥ 0
and a list of coordinates 1 ≤ y1 < y2 < · · · < y2i−1 < y2i ≤ ymax defining i
intervals {(x, y1, z), (x, y1+1, z), . . . , (x, y2, z)}, . . . , {(x, y2i−1, z), (x, y2i−1+
1, z), . . . , (x, y2i, z)}

• G is defined as follows: V (G) is the union of all these intervals, and
E(G) := {{(x, y, z), (x′, y′, z′)} : (x, y, z), (x′, y′, z′) ∈ V (G), |x − x′| +
|y − y′|+ |z − z′| = 1}

• numbers cz,i ∈ N for z = {1, . . . , zmax} and i ∈ {1, 2, 3}, defining edge
weights c : E(G) → N by c(e) := cz,i for e = {(x, y, z), (x′, y′, z′)} ∈ E(G)
with z ≤ z′, where i = 1 if x 6= x′, i = 2 if y 6= y′, and i = 3 if z + 1 = z′
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Figure 3: This example shows a shortest path between source (green) and target
(red) in a subgrid with four layers determined by global routing (yellow). The
cost of an edge running in and orthogonal to the preference direction is 1 and
4, respectively, and the cost of a via is 13. With these costs the blue path has
length 153, which is shortest possible. Note that the graph can be represented
by relatively few intervals.

third layer

(preference direction: y)
first layer

source
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forth layer
(preference direction: x)
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• vertex sets S, T ⊆ V (G)

Task

Compute

• a shortest S-T -path in (G, c), i.e. a path P in G from a vertex s ∈ S to a
vertex t ∈ T such that

∑
e∈E(P ) c(e) is minimum.

Challenge

Find an algorithm with running time O(K log K), where K is the number of
intervals I for which there is an S-I-path of length L, where L is the length of
a shortest S-T -path.

What is Known

If all intervals are singletons, Dijkstra’s algorithm with a heap implementation
does the job. For the general case there is an O(LK log K)-algorithm by Peyer,
Rautenbach and Vygen [2006].

Extensions

• A well-known idea for speeding up Dijkstra’s algorithm in practice is to
replace the cost of an edge (v, w), originally c({v, w}), by c′(v, w) :=
c({v, w}) − π(v) + π(w), where π : V (G) → R satisfies π(t) = 0 for
t ∈ T and π(v) ≤ c({v, w}) + π(w) for {v, w} ∈ E(G) (and hence π(v) is
a lower bound on the length of a path from v to T ) (Pohl [1971], Rubin
[1974]). The better this lower bound is, the shorter is the distance from
S to T with respect to c′, and the fewer vertices are labelled by Dijkstra’s
algorithm.

Of course, this technique (often called goal-oriented search) changes the
instance: it makes the graph directed and changes some of the costs. By
splitting intervals when necessary the edges within an interval can be as-
sumed to have constant cost in each direction. The result of Peyer, Raut-
enbach and Vygen [2006] extends to this more general situation.
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• G may actually not be an induced subgraph of the complete three-dimensional
grid graph. Some edges, in particular some of those representing vias, are
often missing (e.g. in order to model via distance rules).

• Many nets have more than two terminals; we need a Steiner tree connecting
their pins. It may be possible to extend the algorithm to k-terminal nets
for any fixed constant k.

• Not all rules which must be followed in routing can be encoded by the
incomplete grid graph as above. An examples of such a rule is that there
must be a certain minimum amount of metal (i.e., horizontal or vertical
wiring) between two adjacent vias. As an approximate formulation in
graph-theoretic terms, each connected component of the subgraph of the
path that is induced by one routing layer must have minimum size.

• The rules for pin access are quite involved and cannot be discussed here,
but the good news is that they require only local techniques and can be
ignored when searching for global (long) connections.

Importance

Many hours of computing time are spent with routing on a chip in leading-edge
technology. In particular long-distance paths in regions with many obstacles are
difficult to find. Computing such a path can take several seconds. Speeding this
up would have a great benefit.

7 Sink Clustering

Motivation

Some signals on a chip are distributed to thousands, and sometimes even millions
of receivers (sinks). An example is given by clock networks distributing a clock
signal to all storage elements (registers, flip-flops, latches) in a clock domain.
Such networks consume a lot of resources, and in particular a lot of electric
power.

Often the network has two levels. A set of special drivers receives the signal
from a top-level network, and each of these drivers distributes it further to a set
of sinks. The placement of drivers and assignment of sinks to drivers is a kind
of facility location problem that we call sink clustering (cf. Figure 4).
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The electrical capacitance of a net depends on the total length of the wires
and the input capacitance of its sinks. There is a limit on the electrical capaci-
tance that a driver can cope with. The overall power consumption also depends
on the total capacitance and on the number of drivers. This yields the following
problem formulation.

Instance

• a finite set D ⊆ R2 of sinks

• demands (sink capacitances) d : D → R+

• a facility opening cost f ∈ R+

• a capacity u ∈ R+

Task

Compute

• a partition D = D1∪̇ · · · ∪̇Dk,

• a rectilinear Steiner tree Ti for each Di (i = 1, . . . , k)

• such that c(Ti) +
∑

s∈Di
d(s) ≤ u for i = 1, . . . , k

• and
k∑

i=1

c(Ti) + kf

is minimum.

Here c(Ti) denotes the length of Ti.

Challenge

Find a polynomial-time 2-approximation algorithm.
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Figure 4: Example for sink clustering (small part of a chip). The blue squares are
the sinks (here: input pins of storage elements which need to receive a periodic
clock signal). The red objects are the drivers that are to be placed. We may
assume that each driver can be placed on a shortest Steiner tree connecting the
sinks that it drives (or very close). The green objects are irrelevant here.
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What is Known

Maßberg and Vygen [2005] found a 4-approximation algorithm which runs in
O(|D| log |D|) time. Unless P = NP there is no approximation algorithm with
performance guarantee better than 2, which can easily be seen by a reduction
from the NP-hard rectilinear Steiner tree problem (Maßberg and Vygen [2005]):
it is NP-complete to decide whether there is a feasible solution with k = 1.

Extensions

• The above description uses just one type of drivers. In practice one often
has several types, cheaper ones that can drive less and stronger ones that
can drive more capacitance. This corresponds to several pairs (ui, fi),
i = 1, . . . , t. Then u := maxt

i=1 ui, and the objective function becomes

k∑
i=1

(
c(Ti) + min

i:ui≥c(Ti)+d(Di)
fi

)

• Our description assumes that drivers can be placed anywhere. This is
a good approximation except for macros which block a larger part of a
chip. A proper formulation would take a list of rectangular blockages into
account, although we do not see the need for this in practice.

• The drivers must be connected by a top-level network, often a tree. There-
fore one could think of including the length of a Steiner tree connecting
the drivers in the objective function.

• The problem can also be considered in general metric spaces. Here the
best known approximation algorithm has a performance guarantee of 4.099
(Maßberg and Vygen [2005]).

Importance

On many chips the clock networks consume a substantial portion of the power.
Reducing power consumption becomes more and more important. The objective
function of the sink clustering problem models power consumption (of the lowest
stage, which typically makes up more than 80% of the clock tree’s overall power
consumption) quite accurately.
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8 Octagon Representation

Motivation

An octilinear octagon is a nonempty set of the form {(x, y) ∈ R2 : ix + jy ≥
cij for (i, j) ∈ {−1, 0, 1}2} for some constants cij. In the special case when
cij = −∞ for |i|+ |j| 6= 1 they are called rectilinear rectangles.

Octilinear octagons arise from `1-discs by subtracting blockages. More pre-
cisely, consider all sets that can be generated from points by the following op-
erations: (a) replace X ⊆ R2 by {y ∈ R2 : ||y − x||1 ≤ d for some x ∈ X} for
some d > 0; (b) replace X ⊆ R2 by the closure of X \R, where R is a rectilinear
rectangle. All such sets can be written as union of octilinear octagons. They
arise for example in clock tree design (Held et al. [2003]).

Instance

• a set S of n octilinear octagons

Task

Compute

• a set S ′ of octilinear octagons such that the union of S ′ equals the union
of S and the interiors of any two elements of S ′ are disjoint.

Challenge

Find an O(n log n + k)-algorithm, where k is the cardinality of a smallest set S ′

which is a feasible output.

What is Known

This problem can be reduced to the so-called contour problem, asking for the
contour of the union of S: given the contour with k corners one can generate a
solution S ′ with |S ′| ≤ k. As every corner of the contour must be a corner of an
element of S ′, this is optimum up to a factor of 8.

There are simple examples for which k = Θ(n2), even when we restrict to
rectilinear rectangles. But such instances will probably not arise in practice.
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For rectilinear rectangles (i.e. cij = −∞ for |i| + |j| = 2) the contour prob-
lem can be solved by a sweepline algorithm (Güting [1984a]) or by divide-and-
conquer (Güting [1984b]).

Extensions

• Ideally the algorithm would compute a set S ′ of minimum possible cardi-
nality. Then there is no longer a simple reduction to the contour problem.

• The most interesting instances are those that arise from a set S of n
octagons for which the interiors of any two elements are disjoint by an
operation (a) followed by a sequence of n′ operations (b). Assuming that
S and the sequence of these operations is given explicitly, Then an O((n+
n′) log(n + n′))-time algorithm could be possible.

Importance

This is the task of a basic subroutine in bottom-up algorithms for clock tree
design and could also be used by fanout tree algorithms (cf. Section 9). Currently
we are using an algorithm with a quadratic worst-case running time and apply
heuristics to bound the number of octagons. This is not a satisfactory solution.

9 Short and Fast Fanout Trees

Motivation

If a signal is sent over a large distance or distributed to many sinks (i.e., has a
large fanout), it has to be re-powered. This is done by buffers or pairs of invert-
ers (implementing the identity function). Buffers and inverters are also called
repeaters. Optimal buffering makes the delay per unit distance grow almost
linearly. However, the delay along a path also depends on the number of bifur-
cations (more precisely, on the electrical capacitance driven by the repeaters).

Designing trees with repeaters in an optimal way, such that signals arrive in
time but not too many resources are consumed, is an important task. Traditional
approaches started with a shortest Steiner tree and inserted buffers and inverters,
but this is far from optimal. Better trees are needed to meet tight timing
constraints.
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Instance

• a source r ∈ R2

• a finite set S ⊂ R2 of sinks

• required arrival times as (s ∈ S), assuming that the signals starts at r at
time 0

• a delay d > 0 per unit distance

• a bifurcation cost c > 0

Task

Compute

• an arborescence A with {r}
.
∪ S ⊆ V (A) ⊂ R2 and |δ+(r)| = 1 and

|δ+(v)| = 2 for v ∈ V (A) \ ({r} ∪ S)

• such that the worst slack

min
s∈S

as −
∑

e=(v,w)∈E(A[r,s])

d||v − w||1 − c(|E(A[r,s])| − 1)


is as large as possible up to an additive constant of c,

• and among all such solutions
∑

e=(v,w)∈E(A) ||v − w||1 is minimum.

Here A[r,s] denotes the unique r-s-path in A.

Challenge

Find a polynomial-time 3
2
-approximation algorithm.

What is Known

Just maximizing the worst slack is trivial by Huffman coding as long as all
numbers as − d||r − s||1 (s ∈ S) are integer multiples of c. Here all |S| − 1
Steiner points can be placed at the position of r. Defining the criticality of a
sink s by as−d||r− s||1, the arborescence is constructed in a bottom-up fashion
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by iteratively replacing the two sinks with minimum criticality by a new sink
whose criticality is by c less than the smaller of the two.

It is easy to see that this yields optimum worst slack (up to a rounding error
of at most c), but it will generally lead to intolerably large length. Bartoschek
et al. [2006] showed how the length can be improved by successively inserting
the sinks at an optimal place, in an order of nondecreasing criticality. However,
this guarantees neither optimum worst slack nor short length. If we always
insert a sink that is closest to the current tree in a shortest possible way, we get
a well-known 3

2
-approximation algorithm (sometimes called Prim heuristic) for

the rectilinear Steiner tree problem.
The question is whether the two results can be combined somehow. However,

this will not be straightforward, as Alon and Azar [1993] gave an example show-
ing that for the online rectilinear Steiner tree problem the best appproximation
ratio we can hope for is Θ(log n/ log log n), where n is the number of terminals.

Extensions

• Ideally the algorithm should have at most quadratic runnning time.

• Some areas of the chip are blocked and must not be used. All vertices and
edges must be embedded in the remaining area. Other areas are blocked
by macros and cannot be used for inverters and buffers but can be used for
wiring. Maximal connected subtrees of the arborescence that run across
such blockages must not exceed a certain length (corresponding to the
capacitance that a repeater can drive).

• There are several routing planes available. Upper planes are faster but also
more expensive in terms of resource consumption. Moreover, the planes
can be used either only for horizontal or only for vertical wires. The
extended task includes the assignment of each edge to a pair of orthogonal
planes.

• Of course it would be even better if one could directly find approximately
optimal repeater trees rather than first constructing a topology and then
inserting inverters and buffers. However, this seems to be even harder.
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Importance

A state-of-the-art chip has millions of buffers and inverters, and timing con-
straints are very hard to meet. Buffering, in particular designing fanout trees,
is a major part of timing optimization and a key problem in chip design today.

10 Logic Synthesis

Motivation

Logic synthesis is the problem of implementing a given Boolean function f :
{0, 1}m → {0, 1}n by a Boolean circuit. A Boolean circuit can be represented by
an acyclic digraph with n sources and m sinks. The other vertices are gates, each
of which has an elementary Boolean function, such as an inverter, AND, OR,
NAND, NOR, XOR, etc. A Boolean circuit computes a Boolean function in the
natural way. It is essentially equivalent to a netlist. f is typically given either in
a certain hardware description language (similar to a programming language),
or by a Boolean circuit.

The main criteria for the quality of a solution are area (which is estimated
by the number of gates) and timing (see below).

In spite of its tremendous relevance, not much is known about algorithms
for logic synthesis. Quite simple heuristics are used in practice. Of course it is
coNP-complete to decide whether a given Boolean circuit implements a constant
function, but this does not mean that all problems are hopeless.

Instance

• a Boolean function f : {0, 1}m → {0, 1}n by a list of all 2m function values
(each consisting of n bits)

Task

Compute

• a Boolean circuit (using some fixed library) with minimum number of gates
implementing f .
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Challenge

Find a polynomial-time algorithm, or at least an approximation algorithm.

What is Known

Essentially nothing. Even in the case n = 1 we know no approximation algo-
rithm. The library is probably less important, for example we could restrict to
NANDs only. To the best of our knowledge the only known theoretical results
consider variants of this problem (see below).

Extensions

• As a variation, f might be given by some Boolean circuit using k gates;
now we ask for an algorithm whose running time is 2O(k).

• Often we also want to bound the depth, i.e. the length of a longest path.
This roughly corresponds to delay. The variation where the Boolean circuit
must have depth 2 was shown to be NP-complete by Masek [1978] and
inapproximable by Feldman [2006]. See also the work of Kabanets and
Cai [2000]. The problem seems to be open even for depth 3.

• The inputs 1, . . . ,m may be associated with arrival times a1, . . . , am, and
the outputs have required times r1, . . . , rn. Then we want to maximize
mini,j(rj − ai − dij), where dij denotes the length of a longest path from i
to j. Rautenbach, Szegedy and Werber [2003] suggested an approximation
scheme for a special case of the case n = 1.

• In fact we often have an incompletely specified Boolean function f :
{0, 1}m → {0, 1, d}n, where d stands for don’t care. We look for a Boolean
circuit computing some concretion of f , i.e. some g : {0, 1}m → {0, 1}n

with fi(x) ∈ {gi(x), d} for all x ∈ {0, 1}m and i = 1, . . . , n.

Importance

Logic synthesis is key for the quality of a netlist. The state of the art is rather
poor, compared to other areas of chip design. Therefore we see much room
for improvement here. While physical chip layout has improved substantially
in the last two decades due to better algorithms, logic synthesis has not been
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approached seriously by mathematicians. Consequently an improvement of logic
synthesis by mathematical ideas is badly needed.

Conclusion

Although a lot of progress has been made, and many theoretical results and
new algorithms made their way to real design tools, chip design practice is also
a constant source of interesting problems, many of which are of combinatorial
nature. On the one hand, new problems come up or become important due to
technological advances. On the other hand, new ideas lead to new formulations
in classical problem areas. We hope that we could demonstrate the variety of
interesting problems and could give a fresh view on some of the most important
combinatorial problems in chip design.
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