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Facility Location: Applications

I manufacturing plants
I storage facilities, depots
I warehouses, retail stores
I libraries, fire stations, hospitals
I servers in the internet
I base stations for wireless services
I buffers distributing signals on a chip
I ...

Goal: Optimum service for clients at minimum cost



Common features of facility location problems

I Two sets: clients and potential facilities
I Each client must be served.
I A potential facility can be opened or not.
I Clients can only be served by open facilities.

I Two cost components: facility cost and service cost.
I Opening a facility involves a certain cost.
I Serving a client from a facility involves a certain cost.

I The total cost is to be minimized.



Illustration: facility location instance
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Illustration: choosing a set of open facilities

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��



Illustration: connect clients to open facilities
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But there are many variants

I Can a client’s demand be satisfied by more than one facility?
I Are there constraints on the total demand, or total service

cost, that a facility can handle?
I Do the service costs satisfy the triangle inequality?
I Are there finitely or infinitely many potential facilities?
I Do the facility costs depend on the total demand served?
I Is it allowed to serve only a subset of clients, and pay for

those that are not served?
I Is there a bound on the number of facilities that we can open?
I Does the total service cost of a facility depend on the sum of

the distances to its clients, or the length of a shortest tour, or
the length of an optimal Steiner tree?

I Are we interested in the sum of all service costs, or rather in
the maximum service cost?

I Do we need to serve facilities by second-stage facilities (etc.)?



Example 1: Fermat-Weber Problem
The most prominent example for continuous facility location

Locating a single facility in Rn: Given a1, . . . , am ∈ Rn and weights
w1, . . . , wm ∈ R+, find p ∈ Rn minimizing

m∑
i=1

wi ||p − ai ||.

I For `1-norm solvable in linear time (Blum et al. 1973)
I `2-norm, n = 2, m = 3: Simple geometric solution (Fermat,

Torricelli, Cavalieri, Simpson, Heinen)
I For `2-norm: construction by ruler and compasses impossible

(Bajaj 1988)
I Approximate solution for `2-norm: Weiszfeld’s algorithm

(Weiszfeld 1937, Kuhn 1973, Vardi and Zhang 2001,
Rautenbach et al. 2004)



Example 2: Uncapacitated Facility Location (UFL)
The most prominent example for discrete facility location

Instance:
I a finite set D of clients;
I a finite set F of potential facilities;
I a fixed cost fi ∈ R+ for opening each facility i ∈ F ;
I a service cost cĳ ∈ R+ for each i ∈ F and j ∈ D.

We look for:
I a subset S of facilities (called open) and
I an assignment σ : D → S of clients to open facilities,
I such that the sum of facility costs and service costs∑

i∈S

fi +
∑
j∈D

cσ(j)j

is minimum.



More examples discussed later

I Capacitated Facility Location
I Universal Facility Location
I Facility Location and Network Design with Service Capacities

These are more general and more realistic in many applications.



Approximation Algorithms: Definition

Let f be a function assigning a real number to each instance.
An f -approximation algorithm is an algorithm for which a
polynomial p exists such that for each instance I :

I the algorithm terminates after at most p(size(I )) steps,
I the algorithm computes a feasible solution, and
I the cost of this solution is at most f (I ) times the optimum

cost of instance I .
f is called the approximation ratio or performance guarantee.
If f is a constant, we have a (constant-factor) approximation
algorithm.



Uncapacitated Facility Location is as hard as Set Covering

Set Covering: Given a finite set U, a family S of subsets of U
with

⋃
S∈S S = U, and weights w : S → R+, find a set R ⊆ S

with
⋃

R∈R R = U with minimum total weight
∑

R∈R w(R).

I No o(log |U|)-approximation algorithm exists unless P = NP.
(Raz, Safra 1997)

I Greedy algorithm has performance ratio 1 + ln |U|.
(Chvátal 1979)

I Set Covering is a special case of Uncapacitated
Facility Location: define D := U, F := S, fS = w(S) for
S ∈ S, cSj := 0 for j ∈ S ∈ S and cSj := ∞ for j ∈ U \ S .

I Conversely, the greedy algorithm for Set Covering can be
applied to Uncapacitated Facility Location:
Set U := D, S = F × 2D, and w(i , D) := fi +

∑
j∈D cĳ .

(Hochbaum 1982)



A natural assumption: metric service costs

Therefore we assume henceforth metric service costs:

cĳ ≥ 0

and
cĳ + ci ′j + ci ′j ′ ≥ cĳ ′

for all i , i ′ ∈ F and j , j ′ ∈ D.

Equivalently, we assume c to be a (semi)metric on D ∪ F .

Motivation:

I The general problem is as hard as Set Covering.
I In many practical problems service costs are proportional to

geometric distances, or to travel times, and hence are metric.

But: Greedy algorithm has performance guarantee
Ω(log n/ log log n) even for metric instances. (Jain et al. 2003)



Integer Linear Programming Formulation

minimize
∑
i∈F

fiyi +
∑
i∈F

∑
j∈D

cĳxĳ

subject to
xĳ ≤ yi (i ∈ F , j ∈ D)∑

i∈F
xĳ = 1 (j ∈ D)

xĳ ∈ {0, 1} (i ∈ F , j ∈ D)

yi ∈ {0, 1} (i ∈ F)

(Balinski 1965)



Linear Programming Relaxation

minimize
∑
i∈F

fiyi +
∑
i∈F

∑
j∈D

cĳxĳ

subject to
xĳ ≤ yi (i ∈ F , j ∈ D)∑

i∈F
xĳ = 1 (j ∈ D)

xĳ ≥ 0 (i ∈ F , j ∈ D)

yi ≥ 0 (i ∈ F)



The Dual LP

maximize
∑
j∈D

vj

subject to
vj − wĳ ≤ cĳ (i ∈ F , j ∈ D)∑
j∈D

wĳ ≤ fi (i ∈ F)

wĳ ≥ 0 (i ∈ F , j ∈ D)



First Approximation Algorithm: LP Rounding

I Compute an optimum solutions (x∗, y∗) and (v∗, w∗) to the
primal and dual LP.

I By complementary slackness, x∗ĳ > 0 implies v∗j − w∗
ĳ = cĳ ,

and thus cĳ ≤ v∗j .
I Let G be the bipartite graph with vertex set F ∪D containing

an edge {i , j} iff x∗ĳ > 0.
I Assign clients to clusters iteratively as follows.

I In iteration k, let jk be a client j ∈ D not assigned yet and
with v∗j smallest.

I Create a new cluster containing jk and those vertices of G that
have distance 2 from jk and are not assigned yet.

I Continue until all clients are assigned to clusters.
I For each cluster k we choose a neighbour ik of jk with fik

minimum, open ik , and assign all clients in this cluster to ik .



Analysis of the LP Rounding Approximation Algorithm
I The service cost for client j in cluster k is at most

cik j ≤ cĳ + cĳk + cik jk ≤ v∗j + 2v∗jk ≤ 3v∗j ,

where i is a common neighbour of j and jk .
I The facility cost fik can be bounded by

fik ≤
∑
i∈F

x∗ĳk
fi =

∑
i∈F :{i ,jk}∈E(G)

x∗ĳk
fi ≤

∑
i∈F :{i ,jk}∈E(G)

y∗i fi .

As jk and jk′ cannot have a common neighbour for k 6= k ′,
the total facility cost is at most

∑
i∈F y∗i fi .

I The total cost is at most

3
∑
j∈D

v∗j +
∑
i∈F

y∗i fi ,

which is at most four times the LP value. Hence we get:

Theorem
This is a 4-approximation algorithm for metric UFL.
(Shmoys, Tardos and Aardal 1997)



Better approximation ratios for metric UFL

technique ratio RT authors year
LP-Rounding 3.16 – Shmoys, Tardos, Aardal 1997
LP-Rounding+Greedy 2.41 – Guha, Khuller 1998
LP-Rounding 1.74 – Chudak 1998
Local Search 5.01 ◦ Korupolu, Plaxton, Ra-

jaraman
1998

Primal-Dual 3.00 + Jain, Vazirani 1999
Primal-Dual+Greedy 1.86 + Charikar, Guha 1999
LP-Rounding+Primal-
Dual+Greedy

1.73 – Charikar, Guha 1999

Local Search 2.42 ◦ Arya et al. 2001
Primal-Dual 1.61 + Jain, Mahdian, Saberi 2002
LP-Rounding 1.59 – Sviridenko 2002
Primal-Dual+Greedy 1.52 + Mahdian, Ye, Zhang 2002

RT : running time; – : slow; ◦ : medium; + : fast



Primal-Dual Algorithm by Jain, Mahdian and Saberi (2002)

Start with U := D and time t = 0. Increase t, maintaining vj = t
for all j ∈ U. Consider the following events:

I vj = cĳ , where j ∈ U and i is not open. Then start to increase
wĳ at the same rate, in order to maintain vj − wĳ = cĳ .

I
∑

j∈D wĳ = fi . Then open i . For all j ∈ D with wĳ > 0:
freeze vj and set wi ′j := max{0, cĳ − ci ′j} for all i ′ ∈ F , and
remove j from U.

I vj = cĳ , where j ∈ U and i is open. Then freeze vj and set
wi ′j := max{0, cĳ − ci ′j} for all i ′ ∈ F , and remove j from U.



Improvement by Mahdian, Ye and Zhang (2002)

I Multiply all facility costs by 1.504.
I Apply the Jain-Mahdian-Saberi algorithm.
I Now consider the original facility costs.
I Apply greedy augmentation (Charikar, Guha 1999):

Let gi be the service cost saving induced by adding facility i .
Iteratively pick an element i ∈ F maximizing gi

fi
as long as

this ratio is greater than 1.

Theorem
This is a 1.52-approximation algorithm for metric UFL.



Lower bound on approximation ratios

Theorem
There is no 1.463-factor approximation algorithm for metric UFL
unless P = NP.

(Sviridenko [unpublished], based on Guha and Khuller [1999] and
Feige [1998])



Local Search as a general heuristic

Basic Framework:
I Define a neighbourhood graph on the feasible solutions.
I Start with any feasible solution x .
I If there is a neighbour y of x that is (significantly) better, set

x := y and iterate.
Features:

I Quite successful for many practical (hard) problems
I Many variants of local search heuristics
I Typically no guarantees of running time and performance

ratio.



Local Search in Combinatorial Optimization

Example: TSP
I Even simple 2-opt typically yields good solutions. Variants

(chained Lin-Kernighan) with empirically less than 1% error
I Worst-case running time of k-opt is exponential for all k.
I Performance ratio Ω(n

1
2k ).

(Applegate et al. 2003, Chandra, Karloff, Tovey 1999)

Example: Facility Location
I Probably the first nontrivial problem where local search led to

constant-factor approximation algorithms.
(Korupolo, Plaxton and Rajamaran 2000, Arya et al. 2004)

I But: for metric UFL worse in theory (maybe also in practice)
I The only known technique to obtain a constant-factor

approximation for Capacitated Facility Location.



Capacitated Facility Location (CFL)
Instance:

I finite sets D (clients) and F (potential facilities);
I metric service costs cĳ ∈ R+ for i ∈ F and j ∈ D;
I an opening cost fi ∈ R+ for each facility i ∈ F ;
I a capacity ui ∈ R+ for each facility i ∈ F ;
I a demand dj for each client j ∈ D.

We look for:
I a subset S of facilities (called open) and
I an assignment x : S ×D → R+ with

∑
i∈S xĳ = dj for j ∈ D

and
∑

j∈D xĳ ≤ ui for i ∈ S
I such that the sum of facility costs and service costs

∑
i∈S

fi +
∑
j∈D

cĳxĳ


is minimum.



Splittable or Unsplittable Demands

Assume that facilities with given capacities are open.
Task: assign the clients to these facilities, respecting capacity
constraints.

I Splittable (or uniform) demand:
Hitchcock transportation problem.

I Unsplittable non-uniform demand:
Generalizes bin packing.

Consequence: CFL with unsplittable demands has no
approximation algorithm. It is strongly NP-hard to distinguish
between instances with optimum cost 0 and ∞.

Hence consider splittable demands only.



Universal Facility Location (UniFL)

Instance:
I finite sets D (clients) and F (potential facilities);
I metric service costs, i.e. a metric c on D ∪ F ;
I a demand dj ≥ 0 for each j ∈ D;
I for each i ∈ F a cost function fi : R+ → R+ ∪ {∞},

left-continuous and non-decreasing.
We look for:

I a function x : F ×D → R+ with
∑

i∈F xĳ = dj for all j ∈ D
(a feasible solution), such that c(x) := cF (x) + cS(x) is minimum,
where

cF (x) :=
∑
i∈F

fi

(∑
j∈D

xĳ

)
and cS(x) :=

∑
i∈F

∑
j∈D

cĳxĳ .



UniFL: Facility cost function given by an oracle

fi (z): cost to install capacity z at facility i .

Given by an oracle that, for each i ∈ F , u, c ∈ R+ and t ∈ R,
computes fi (u) and

max{δ ∈ R : u + δ ≥ 0, fi (u + δ)− fi (u) + c|δ| ≤ t}.

Proposition
There always exists an optimum solution.
(Mahdian and Pál 2003)



UniFL: important special cases

I Uncapacitated Facility Location:
dj = 1 (j ∈ D), and fi (0) = 0 and fi (z) = ti for some ti ∈ R+

and all z > 0 (i ∈ F).
I Capacitated Facility Location:

fi (0) = 0, fi (z) = ti for 0 < z ≤ ui and fi (z) = ∞ for z > ui ,
where ui , ti ∈ R+ (i ∈ F).

I Soft-Capacitated Facility Location:
dj = 1 (j ∈ D), and fi (z) = d z

ui
eti for some ui ∈ N, ti ∈ R+

and all z ≥ 0 (i ∈ F).



Simple local search operations

I Add: open a facility (CFL); add capacity to a facility (UniFL).
I Drop: close a facility (CFL).
I Swap: open one facility, close another one (CFL).

Even for CFL with non-uniform demands, these operations do not
suffice:
When closing one facility, it may be necessary to open many other
ones (and re-assign the demand along the edges of a star).



Previous approximation algorithms for CFL and UniFL
Kuehn, Hamburger 1963 add,drop,swap CFL —
Korupolu, Plaxton, Raja-
maran 1998

add,drop,swap CFL 8.001 uniform
capacities

Chudak, Williamson
1999

add,drop,swap CFL 5.829 uniform
capacities

Pál, Tardos, Wexler 2001 add,star CFL 8.532
Mahdian, Pál 2003 add,star UniFL 7.873
Zhang, Chen, Ye 2004 add,double-star CFL 5.829
Garg, Khandekar, Pandit
2005

add,double-star UniFL 5.829 not poly-
nomial!

Vygen 2005 add,comet UniFL 6.702

All based on
local search.
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Add Operation for UniFL

Let t ∈ D and δ > 0. Replace current solution x by an optimum
solution y of the transportation problem

min

{
cS(y)

∣∣∣∣∣ y : F ×D → R+,
∑
i∈F

yĳ = dj (j ∈ D),

∑
j∈D

yĳ ≤
∑
j∈D

xĳ (i ∈ F \ {t}),
∑
j∈D

ytj ≤
∑
j∈D

xtj + δ

}
.

We denote by

cx(t, δ) := cS(y)− cS(x) + ft

∑
j∈D

xtj + δ

− ft

∑
j∈D

xtj


the estimated cost (which is at least c(y)− c(x)).



How to find a profitable Add operation

Lemma
Let ε > 0 and t ∈ F . Let x be a feasible solution. Then there is an
algorithm with running time O(|V |3 log |V |ε−1) that

I finds a δ ∈ R+ with cx(t, δ) ≤ −εc(x)

I or decides that no δ ∈ R+ exists for which cx(t, δ) ≤ −2εc(x).

(Mahdian, Pál 2003)



Pivot Operation
Let x be a feasible solution. Let A be a graph with V (A) = F and

δ ∈ ∆x
A :=

δ ∈ RF

∣∣∣∣∣∣
∑
j∈D

xĳ + δi ≥ 0 for all i ∈ F ,
∑
i∈F

δi = 0

 .

Then we consider the operation Pivot(A, δ), which means:
I Compute a minimum-cost (w.r.t. c) uncapacitated δ-flow in

(A, c).
I W.l.o.g., the edges carrying flow form a forest.
I Scan these edges in topological order, reassigning clients

according to flow values.
I This increases the cost of the solution by at most the cost of

the flow plus

∑
i∈F

fi

(∑
j∈D

xĳ + δi

)
− fi

(∑
j∈D

xĳ

)
.



How to find a profitable Pivot operation

But: how to choose δ?
I δ cannot be chosen almost optimally for the complete graph

(unless P = NP).
I We show how to choose δ almost optimally if A is a forest.



Restrict attention to Pivot on arborescences

Let A be an arborescence with V (A) = F . Let x be a feasible
solution.
For δ ∈ ∆x

A define

cx
A,i (δ) := fi

(∑
j∈D

xĳ + δi

)
− fi

(∑
j∈D

xĳ

)
+

∣∣∣∣∣ ∑
j∈A+

i

δj

∣∣∣∣∣cip(i)

for i ∈ F and
cx(A, δ) :=

∑
i∈F

cx
A,i (δ).

Here A+
i denotes the set of vertices reachable from i in A, and p(i)

is the predecessor of i .



How to find a profitable Pivot for an arborescence

Lemma
Let ε > 0. There is an algorithm with running time O(|F|4ε−3)
that

I finds a δ ∈ ∆x
A with cx(A, δ) ≤ −εc(x)

I or decides that no δ ∈ ∆x
A exists for which

cx(A, δ) ≤ −2εc(x).

(Vygen 2005)



Bounding the cost of a local optimum

Let 0 < ε < 1. Let x , x∗ be feasible solutions to a given instance.

Lemma
If cx(t, δ) ≥ − ε

|F|c(x) for all t ∈ F and δ ∈ R+, then

cS(x) ≤ cF (x∗) + cS(x∗) + εc(x).

(Pál, Tardos and Wexler 2001)

Lemma
If cx(A, δ) ≥ − ε

|F|c(x) for all stars and comets A and δ ∈ ∆x
A, then

cF (x) ≤ 4cF (x∗) + 2cS(x∗) + 2cS(x) + εc(x).

(Vygen 2005)



The total cost of a local optimum

These two lemmata imply:

Theorem
If cx(t, δ) > − ε

8|F|c(x) for t ∈ F and δ ∈ R+ and
cx(A, δ) > − ε

8|F|c(x) for all stars and comets A and δ ∈ ∆x
A, then

c(x) ≤ (1 + ε)(7cF (x∗) + 5cS(x∗)).

By scaling facility costs by
√

41−5
2 we get a polynomial-time

(
√

41+7
2 + ε)-approximation algorithm for UniFL.



How to bound the facility cost

Let x be the current solution and x∗ be an optimum solution.
Let b(i) :=

∑
j∈D(xĳ − x∗ĳ ) (i ∈ F).

Let y be an optimum transshipment from S := {i ∈ F : b(i) > 0}
to T := {i ∈ F : b(i) < 0}.
W.l.o.g., the edges where y is positive form a forest F .
The cost of y is at most cS(x∗) + cS(x).

Using F and y , we will define a set of pivot operations on stars
and comets, whose total estimated cost is at most
4cF (x∗)− cF (x) + 2cS(x∗) + 2cS(x).
An operation (A, δ) closes s ∈ S if δs = −b(s) < 0, and it opens
t ∈ T if 0 < δt ≤ −b(t).
Over all operations to be defined, we will close each s ∈ S once,
open each t ∈ T at most four times, and use an estimated routing
cost at most twice the cost of y .



How to define the operations (1)

Orient F as a set of arborescences rooted at elements of T .
Call a vertex weak if there is more flow on downward than on
upward incident arcs, otherwise strong. Let t ∈ T .
Open t up to twice if t is strong and up to three times if t is weak.
For each child s of t: Close s once, and open each child of s at
most once (if weak) or twice (if strong).
Example:
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strongstrong weakweak

weak



How to define the operations (2)
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VLSI Design: Distributing a signal to several terminals

blue: terminals red: facilities



Problem Statement
Instance:

I metric space (V , c),
I finite set D ⊆ V (terminals/clients),
I demands d : D → R+,
I facility opening cost f ∈ R+,
I capacity u ∈ R+.

Find a partition D = D1∪̇ · · · ∪̇Dk and
Steiner trees Ti for Di (i = 1, . . . , k) with

c(E (Ti )) + d(Di ) ≤ u

for i = 1, . . . , k such that
k∑

i=1

c(E (Ti )) + kf

is minimum.



Complexity Results

(All the following results are by Maßberg and Vygen 2005)

Proposition

I There is no (1.5− ε)-approximation algorithm (for any ε > 0)
unless P = NP.

I There is no (2− ε)-approximation algorithm (for any ε > 0)
for any class of metrics where the Steiner tree problem cannot
be solved exactly in polynomial time.

I There is a 2-approximation algorithm for geometric instances
(similar to Arora’s approximation scheme for the TSP).
However, this is not practically efficient.



Lower bound: spanning forests

Let F1 be a minimum spanning tree for (D, c).
Let e1, . . . , en−1 be the edges of F1 so that c(e1) ≥ . . . ≥ c(en−1).
Set Fk := Fk−1 \ {ek−1} for k = 2, . . . , n.

Lemma
Fk is a minimum weight spanning forest in (D, c) with exactly k
components.

Proof.
By induction on k. Trivial for k = 1. Let k > 1.
Let F ∗ be a minimum weight k-spanning forest.
Let e ∈ Fk−1 such that F ∗ ∪ {e} is a forest. Then

c(Fk) + c(ek−1) = c(Fk−1) ≤ c(F ∗) + c(e) ≤ c(F ∗) + c(ek−1).



Lower bound: Steiner forests

A k-Steiner forest is a forest F with D ⊆ V (F ) and exactly k
components.

Lemma
1
αc(Fk) is a lower bound for the cost of a minimum weight
k-Steiner forest, where α is the Steiner ratio.



Lower bound: number of facilities

Let t ′ be the smallest integer such that

1
α

c(Ft′) + d(D) ≤ t ′ · u

Lemma
t ′ is a lower bound for the number of facilities of any solution.

Let t ′′ be an integer in {t ′, . . . , n} minimizing

1
α

c(Ft′′) + t ′′ · f .

Theorem
1
αc(Ft′′) + t ′′ · f is a lower bound for the cost of an optimal
solution.



Algorithm A

1. Compute a minimum spanning tree on (D, c).
2. Compute t ′′ and spanning forest Ft′′ as above.
3. Split up overloaded components by a bin packing approach.

It can be guaranteed that for each new component at least u
2 of

load will be removed from the initial forest.



Analysis of Algorithm A

Recall: 1
αc(Ft′′) + t ′′ · f is a lower bound for the optimum.

We set Lr := 1
αc(Ft′′) and Lf := t ′′ · f .

Observe: Lr + d(D) ≤ u
f Lf .

The cost of the final solution is at most

c(Ft′′) + t ′′f +
2
u

(
c(Ft′′) + d(D)

)
f

= αLr + Lf +
2f
u
(
αLr + d(D)

)
≤ αLr + Lf + 2αLf

Theorem
Algorithm A is a (2α + 1)-approximation algorithm.



Algorithm B

Define metric c ′ by c ′(v , w) := min{c(v , w), uf
u+2f }.

1. Compute a Steiner tree F for D in (V , c ′) with some
β-approximation algorithm.

2. Remove all edges e of F with c(e) ≥ uf
u+2f .

3. Split up overloaded components of the remaining forest as in
algorithm A.

Theorem
Algorithm B has perfomance ratio 3β.
Using the Robins-Zelikovsky Steiner tree approximation algorithm
we get a 4.648-approximation algorithm.

With a more careful analysis of the Robins-Zelikovsky algorithm we
can get a 4.099-approximation algorithm in O(n210000

) time.



Algorithm C

Define metric c ′′ by c ′′(v , w) := min{c(v , w), uf
u+f }

1. Compute a tour F for D in (V , c ′′) with some
γ-approximation algorithm.

2. Remove the longest edge of F .
3. Remove all edges e of F with c(e) ≥ uf

u+f .
4. Split up overloaded components of the remaining forest as in

algorithm A.

Theorem
Algorithm C has perfomance ratio 3γ.
Using Christofides’ TSP approximation algorithm we get a
4.5-approximation algorithm in O(n3) time.



Comparison of the three approximation algorithms

I Algorithm A computes a minimum spanning tree.
I Algorithm B calls the Robins-Zelikovsky algorithm.
I Algorithm C calls Christofides’ algorithm.
I Then each algorithm deletes expensive edges and splits up

overloaded components.

algorithm metric perf.guar. runtime
A (R2, `1) 4 O(n log n)
A general 5 O(n2)

B general 4.099 O(n210000
)

C general 4.5 O(n3)



Experimental Results

Algorithm A on six real-world instances:

inst1 inst2 inst3 inst4 inst5 inst6
# terminals 3675 17140 45606 54831 109224 119461
MST length 13.72 60.35 134.24 183.37 260.36 314.48

t ′ 117 638 1475 2051 3116 3998
Lr 8.21 31.68 63.73 102.80 135.32 181.45

Lr + Lf 23.07 112.70 251.06 363.28 531.05 689.19
# facilities 161 947 2171 2922 4156 5525
service cost 12.08 54.23 101.57 159.93 234.34 279.93

total cost 32.52 174.50 377.29 531.03 762.15 981.61
gap (factor) 1.41 1.55 1.59 1.46 1.44 1.42



Reduction of power consumption

Algorithm A on four chips, compared to the previously used
heuristic:

chip Jens Katrin Bert Alex
technology 180nm 130nm 130nm 130nm

# clocktrees 1 3 69 195
total # sinks 3805 137265 40298 189341

largest instance 375 119461 16260 35305
power (W, old) 0.100 0.329 0.306 2.097

power (W, new) 0.088 0.287 0.283 1.946
difference −11.1% −12.8% −7.5% −7.2%



Some Open Problems

I Close the gap between 1.46 and 1.52 for the approximability
of Uncapacitated Facility Location.

I Find better lower bounds than 1.46 for capacitated problems
(such as CFL).

I Is Universal Facility Location really harder than CFL?
I Improve the approximation ratio for the problem with service

capacities (in (R2, `1), with a practically efficient algorithm).
I In some real-world instances, there exists an interval graph on

the terminals, and we have to partition this graph into cliques.
Is there an approximation algorithm for the resulting problem?

I What other interesting problems combining facility location
with network design, or routing, can be approximated?

I What about multi-stage extensions?



Further Reading

I J. Vygen. Approximation Algorithms for Facility Location
Problems (lecture notes, with complete proofs and references).
Can be downloaded at
http://www.or.uni-bonn.de/~vygen

I B. Korte, J. Vygen. Combinatorial Optimization: Theory and
Algorithms (Chapter 22). Springer, Berlin, third edition 2006.
Also available in Japanese!

I J. Maßberg, J. Vygen. Approximation Algorithms for Network
Design and Facility Location with Service Capacities.
Proceedings of the 8th International Workshop on
Approximation Algorithms for Combinatorial Optimization
Problems (APPROX 2005); LNCS 3624, Springer, Berlin
2005, pp. 158–169

http://www.or.uni-bonn.de/~vygen
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