Scheduling Single Machine Scheduling

Tim Nieberg

Observation:

• for non-preemptive problems and regular objectives, a sequence in which the jobs are processed is sufficient to describe a solution

Dispatching (priority) rules

- static rules not time dependent e.g. shortest processing time first, earliest due date first
- dynamic rules time dependent
 e.g. minimum slack first (slack= d_j p_j t; t current time)
- for some problems dispatching rules lead to optimal solutions

Given:

n jobs with processing times p₁,..., p_n and weights
 w₁,..., w_n

Consider case: $w_1 = \ldots = w_n (= 1)$:

Given:

n jobs with processing times p₁,..., p_n and weights
 w₁,..., w_n

Consider special case: $w_1 = \ldots = w_n (= 1)$:

- SPT-rule: shortest processing time first
- <u>Theorem</u>: SPT is optimal for $1||\sum C_j$ Proof: by an exchange argument (on board)
- Complexity: O(n log(n))

Single machine models: $1 || \sum w_j C_j|$

General case

- WSPT-rule: weighted shortest processing time first, i.e. sort jobs by increasing p_j/w_j-values
- <u>Theorem</u>: WSPT is optimal for $1 || \sum w_j C_j$ Proof: by an exchange argument (exercise)
- Complexity: O(n log(n))

Further results:

- 1|tree|∑ w_jC_j can be solved by in polynomial time (O(n log(n))) (see [Brucker 2004])
- 1|prec|∑ C_j is NP-hard in the strong sense (see [Brucker 2004])

Given:

- *n* jobs with processing times p_1, \ldots, p_n
- precedence constraints between the jobs
- regular functions f_1, \ldots, f_n
- objective criterion $f_{max} = \max\{f_1(C_1), \ldots, f_n(C_n)\}$

Observation:

• completion time of last job = $\sum p_j$

Given:

- *n* jobs with processing times p_1, \ldots, p_n
- precedence constraints between the jobs
- regular functions f_1, \ldots, f_n
- objective criterion $f_{max} = \max\{f_1(C_1), \ldots, f_n(C_n)\}$

Observation:

• completion time of last job = $\sum p_j$

Method

- plan backwards from $\sum p_j$ to 0
- from all available jobs (jobs from which all successors have already been scheduled), schedule job which is 'cheapest' on that position

Single machine models: $1|prec|f_{max}$

- S set of already scheduled jobs (initial: $S = \emptyset$)
- J set of all jobs, which successors have been scheduled (initial: all job
- t time where next job will be completed (initial: $t = \sum p_j$)

Algorithm 1|prec|f_{max} (Lawler's Algorithm)

REPEAT

select $j \in J$ such that $f_j(t) = \min_{k \in J} f_k(t)$; schedule j such that it completes at t; add j to S, delete j from J and update J; $t := t - p_j$; UNTIL $J = \emptyset$.

- <u>Theorem</u>: Algorithm $1|prec|f_{max}$ is optimal for $1|prec|f_{max}$ Proof: on the board
- Complexity: $O(n^2)$

Problem 1||L_{max}:

- Earliest due date first (EDD) is optimal for $1||L_{max}$ (Jackson's EDD rule)
- Proof: special case of Lawler's algorithm

Problem 1||L_{max}:

- Earliest due date first (EDD) is optimal for 1||L_{max} (Jackson's EDD rule)
- Proof: special case of Lawler's algorithm

Problem $1|r_j|C_{max}$:

- $1|r_j|C_{max} \propto 1||L_{max}|$
 - define $d_j := K r_j$, with constant $K > \max r_j$
 - reversing the optimal schedule of this $1||L_{max}$ -problem gives an optimal schedule for the $1|r_j|C_{max}$ -problem

Problem 1 prec Lmax:

- if d_j < d_k whenever j → k, any EDD schedule respects the precedence constraints, i.e. in this case EDD is optimal
- defining $d_j := \min\{d_j, d_k p_k\}$ if $j \to k$ does not increase L_{max} in any feasible schedule

Problem 1 prec L_{max}:

- if d_j < d_k whenever j → k, any EDD schedule respects the precedence constraints, i.e. in this case EDD is optimal
- defining $d_j := \min\{d_j, d_k p_k\}$ if $j \to k$ does not increase L_{max} in any feasible schedule

Algorithm 1 prec Lmax

- make due dates consistent: set $d_j = \min\{d_j, \min_{k|j \to k} d_k - p_k\}$
- apply EDD rule with modified due dates

Remarks on Algorithm 1 prec Lmax

- leads to an optimal solution
- Step 1 can be realized in $O(n^2)$
- problem 1|prec|L_{max} can be solved without knowledge of the processing times, whereas Lawler's Algorithm (which also solves this problem) in general needs this knowledge (Exercise),
- Problem $1|r_j, prec|C_{max} \propto 1|prec|L_{max}$

Problem $1|r_j|L_{max}$:

- problem $1|r_j|L_{max}$ is NP-hard
- Proof: by reduction from 3-PARTITION (on the board)

Problem 1|pmtn, rj|L_{max}:

- preemptive EDD-rule: at each point in time, schedule an available job (job, which release date has passed) with earliest due date.
- preemptive EDD-rule leads to at most k preemptions (k = number of distinct release dates)

Problem $1|pmtn, r_j|L_{max}$:

- preemptive EDD-rule: at each point in time, schedule an available job (job, which release date has passed) with earliest due date.
- preemptive EDD-rule leads to at most k preemptions (k = number of distinct release dates)
- preemptive EDD solves problem 1|pmtn, r_j|L_{max}
- Proof (on the board) uses following results:
 - $L_{max} \ge r(S) + p(S) d(S)$ for any $S \subset \{1, \dots, n\}$, where $r(S) = \min_{j \in S} r_j$, $p(S) = \sum_{i \in S} p_j$, $d(S) = \max_{j \in S} d_j$
 - preemptive EDD leads to a schedule with $L_{max} = \max_{S \subset \{1,...,n\}} r(S) + p(S) d(S)$

Remarks on preemptive EDD-rule for $1|pmtn, r_j|L_{max}$:

- can be implemented in $O(n \log(n))$
- is an 'on-line' algorithm
- after modification of release and due-dates, preemptive EDD solves also 1|prec, pmtn, r_j|L_{max}

Approximation algorithms for problem $1|r_j|L_{max}$:

 a polynomial algorithm A is called an α-approximation for problem P if for every instance I of P algorithm A yields an objective value f_A(I) which is bounded by a factor α of the optimal value f^{*}(I); i.e. f_A(I) ≤ αf^{*}(I)

Approximation algorithms for problem $1|r_j|L_{max}$:

- a polynomial algorithm A is called an α-approximation for problem P if for every instance I of P algorithm A yields an objective value f_A(I) which is bounded by a factor α of the optimal value f^{*}(I); i.e. f_A(I) ≤ αf^{*}(I)
- for the objective L_{max}, α-approximation does not make sense since L_{max} may get negative
- for the objective T_{max}, an α-approximation with a constant α implies P = NP (if T_{max} = 0 an α-approximation is optimal)

The head-body-tail problem $(1|r_j, d_j < 0|L_{max})$

- *n* jobs
- job j: release date r_j (head), processing time p_j (body), delivery time q_j (tail)
- starting time $S_j \ge r_j$;
- completion time $C_j = S_j + p_j$
- delivered at $C_j + q_j$
- goal: minimize $\max_{j=1}^{n} C_j + q_j$

The head-body-tail problem $(1|r_j, d_j < 0|L_{max})$, (cont.)

• define $d_j = -q_j$, i.e. the due dates get negative!

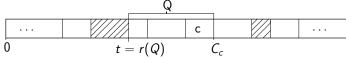
• result: $\min_{j=1}^{n} C_j + q_j = \min_{j=1}^{n} C_j - d_j = \min_{j=1}^{n} L_j = L_{max}$

- head-body-tail problem equivalent with $1|r_j|L_{max}$ -problem with negative due dates <u>Notation</u>: $1|r_j, d_j < 0|L_{max}$
- an instance of the head-body-tail problem defined by n triples (r_j, p_j, q_j) is equivalent to an inverse instance defined by n triples (q_j, p_j, r_j)
- for the head-body-tail problem considering approximation algorithms makes sense

The head-body-tail problem $(1|r_j, d_j < 0|L_{max})$, (cont.) • $L_{max} \ge r(S) + p(S) + q(S)$ for any $S \subset \{1, ..., n\}$, where $r(S) = \min_{j \in S} r_j, \ p(S) = \sum_{j \in S} p_j, \ q(S) = \min_{j \in S} q_j$ (follows from $L_{max} > r(S) + p(S) - d(S)$)

Approximation ratio for EDD for problem $1|r_j, d_j < 0|L_{max}$

• structure of a schedule ${\cal S}$



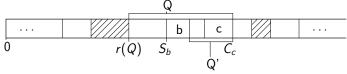
- critical job c of a schedule: job with $L_c = \max L_j$
- critical sequence Q: jobs processed in the interval $[t, C_c]$, where t is the earliest time that the machine is not idle in $[t, C_c]$
- if $q_c = \min_{j \in Q} q_j$ the schedule is optimal since then

$$L_{max}(S) = L_c = C_c - d_c = r(Q) + p(Q) + q(Q) \le L_{max}^*$$

• Notation: L^*_{max} denotes the optimal value

Approximation ratio for EDD for problem $1|r_j, d_j < 0|L_{max}$

• structure of a schedule



- interference job b: last scheduled job from Q with $q_b < q_c$
- <u>Lemma</u>: For the objective value $L_{max}(EDD)$ of an EDD schedule we have: (Proofs on the board)

1
$$L_{max}(EDD) - L_{max}^* < q_c$$
2 $L_{max}(EDD) - L_{max}^* < p_b$

• <u>Theorem</u>: EDD is 2-approximation algorithm for $1|r_j, d_j < 0|L_{max}$

Approximation ratio for EDD for problem $1|r_j, d_j < 0|L_{max}$

- Remarks:
 - EDD is also a 2-approximation for $1|prec, r_j, d_j < 0|L_{max}$ (uses modified release and due dates)
 - by an iteration technique the approximation factor can be reduced to $3/2\,$

Enumerative methods for problem $1|r_j|L_{max}$

- we again will use head-body-tail notation
- Simple branch and bound method:
 - branch on level *i* of the search tree by selecting a job to be scheduled on position *i*
 - if in a node of the search tree on level *i* the set of already scheduled jobs is denoted by *S* and the finishing time of the jobs from *S* by *t*, for position *i* we only have to consider jobs *k* with

$$r_k < \min_{j \notin S} (\max\{t, r_j\} + p_j)$$

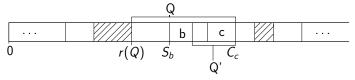
- lower bound: solve for remaining jobs $1|r_j, pmtn|L_{max}$
- search strategy: depth first search + selecting next job via lower bound

Advanced b&b-methods for problem $1|r_j|L_{max}$

- node of search tree = restricted instance
- restrictions = set of precedence constraints
- branching = adding precedence constraints between certain pairs of jobs
- after adding precedence constraints, modify release and due dates
- apply EDD to instance given in a node
 - critical sequence has no interference job: EDD solves instance optimal
 - \rightarrow backtrack
 - critical sequence has an interference job: branch

Advanced b&b-methods for problem $1|r_j|L_{max}$ (cont.)

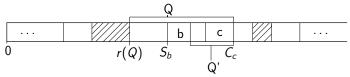
branching, given set Q, critical job c, interference job b, and set Q' of jobs from Q following b



- $L_{max} = S_b + p_b + p(Q') + q(Q') < r(Q') + p_b + p(Q') + q(Q')$
- if b is scheduled between jobs of Q' the value is at least $r(Q') + p_b + p(Q') + q(Q')$; i.e. worse than the current schedule

Advanced b&b-methods for problem $1|r_j|L_{max}$ (cont.)

branching, given sequence Q, critical job c, interference job b, and set Q' of jobs from Q following b



- $L_{max} = S_b + p_b + p(Q') + q(Q') < r(Q') + p_b + p(Q') + q(Q')$
- if b is scheduled between jobs of Q' the value is at least $r(Q') + p_b + p(Q') + q(Q')$; i.e. worse than the current schedule
- ullet branch by adding either $b \to Q'$ or $Q' \to b$

Advanced b&b-methods for problem $1|r_j|L_{max}$ (cont.)

- lower bounds in a node: maximum of
 - lower bound of parent node
 - r(Q') + p(Q') + q(Q')
 - $r(Q' \cup \{b\}) + p(Q' \cup \{b\}) + q(Q' \cup \{b\})$

using the modified release and due dates

- upper bound UB: best value of the EDD schedules
- discard a node if lower bound $\geq UB$
- search strategy: select node with minimum lower bound

Advanced b&b-methods for problem $1|r_j|L_{max}$ (cont.)

- speed up possibility:
 - let $k \notin Q' \cup \{b\}$ with $r(Q') + p_k + p(Q') + q(Q') \ge UB$
 - if $r(Q') + p(Q') + p_k + q_k \ge UB$ then add $k \to Q'$
 - if $r_k + p_k + p(Q') + q(Q') \geq UB$ then add $Q' \rightarrow k$

Single machine models: Number of Tardy Jobs

Problem $1 || \sum U_j$:

- Structure of an optimal schedule:
 - set S_1 of jobs meeting their due dates
 - set S_2 of jobs being late
 - jobs of S_1 are scheduled before jobs from S_2
 - jobs from S_1 are scheduled in EDD order
 - jobs from S_2 are scheduled in an arbitrary order
- <u>Result</u>: a partition of the set of jobs into sets S₁ and S₂ is sufficient to describe a solution

Single machine models: Number of Tardy Jobs

Algorithm $1 || \sum U_j$

• enumerate jobs such that $d_1 \leq \ldots \leq d_n$; **2** $S_1 := \emptyset$; t := 0; FOR j:=1 TO n DO $S_1 := S_1 \cup \{j\}; t := t + p_i;$ 4 5 IF $t > d_i$ THEN 6 Find job k with largest p_k value in S_1 ; $S_1 := S_1 \setminus \{k\}; t := t - p_k;$ 7 8 END END

Remarks Algorithm $1||\sum U_j$

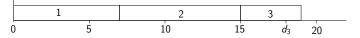
- Principle: schedule jobs in order of increasing due dates and always when a job gets late, remove the job with largest processing time; all removed jobs are late
- complexity: $O(n \log(n))$
- Example: n = 5; p = (7, 8, 4, 6, 6); d = (9, 17, 18, 19, 21)

Single machine models: Number of Tardy Jobs

Remarks Algorithm $1 || \sum U_j$

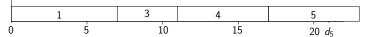
 Principle: schedule jobs in order of increasing due dates and always when a job gets late, remove the job with largest processing time; all removed jobs are late

• Example:
$$n = 5$$
; $p = (7, 8, 4, 6, 6)$; $d = (9, 17, 18, 19, 21)$



Remarks Algorithm $1 || \sum U_j$

- Principle: schedule jobs in order of increasing due dates and always when a job gets late, remove the job with largest processing time; all removed jobs are late
- complexity: $O(n \log(n))$
- Example: n = 5; p = (7, 8, 4, 6, 6); d = (9, 17, 18, 19, 21)

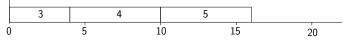


Single machine models: Number of Tardy Jobs

Remarks Algorithm $1 || \sum U_j$

 Principle: schedule jobs in order of increasing due dates and always when a job gets late, remove the job with largest processing time; all removed jobs are late

• Example:
$$n = 5$$
; $p = (7, 8, 4, 6, 6)$; $d = (9, 17, 18, 19, 21)$



• Algorithm $1|| \sum U_j$ computes an optimal solution Proof on the board

Problem $1 || \sum w_j U_j$

- problem 1|| ∑ w_jU_j is NP-hard even if all due dates are the same; i.e. 1|d_j = d| ∑ w_jU_j is NP-hard
 Proof on the board (reduction from PARTITION)
- priority based heuristic (WSPT-rule): schedule jobs in increasing p_j/w_j order

Problem $1 || \sum w_j U_j$

- problem $1||\sum w_j U_j$ is NP-hard even if all due dates are the same; i.e. $1|d_j = d|\sum w_j U_j$ is NP-hard Proof on the board (reduction from PARTITION)
- priority based heuristic (WSPT-rule): schedule jobs in increasing p_j/w_j order
- WSPT may perform arbitrary bad for $1 || \sum w_j U_j$:

Problem $1 || \sum w_j U_j$

- problem 1||∑ w_jU_j is NP-hard even if all due dates are the same; i.e. 1|d_j = d|∑ w_jU_j is NP-hard
 Proof on the board (reduction from PARTITION)
- priority based heuristic (WSPT-rule):
 schedule jobs in increasing p_j/w_j order
- WSPT may perform arbitrary bad for $1 || \sum w_j U_j$:

$$n = 3; p = (1, 1, M); w = (1 + \epsilon, 1, M - \epsilon); d = (1 + M, 1 + M, 1 + M)$$

$$\sum w_j U_j(WSPT) / \sum w_j U_j(opt) = (M-\epsilon)/(1+\epsilon)$$

Single machine models: Weighted Number of Tardy Jobs

Dynamic Programming for $1 || \sum w_j U_j$

- assume $d_1 \leq \ldots \leq d_n$
- as for 1|| ∑ U_j a solution is given by a partition of the set of jobs into sets S₁ and S₂ and jobs in S₁ are in EDD order
- Definition:
 - F_j(t) := minimum criterion value for scheduling the first j jobs such that the processing time of the on-time jobs is at most t
- $F_n(T)$ with $T = \sum_{j=1}^n p_j$ is optimal value for problem $1 || \sum w_j U_j$
- Initial conditions:

$$F_j(t) = \begin{cases} \infty & \text{for } t < 0; \ j = 1, \dots, n \\ 0 & \text{for } t \ge 0; \ j = 0 \end{cases}$$
(1)

Dynamic Programming for $1 || \sum w_j U_j$ (cont.)

- if $0 \le t \le d_j$ and j is late in the schedule corresponding to $F_j(t)$, we have $F_j(t) = F_{j-1}(t) + w_j$
- if $0 \le t \le d_j$ and j is on time in the schedule corresponding to $F_j(t)$, we have $F_j(t) = F_{j-1}(t p_j)$

Dynamic Programming for $1 || \sum w_j U_j$ (cont.)

- if $0 \le t \le d_j$ and j is late in the schedule corresponding to $F_j(t)$, we have $F_j(t) = F_{j-1}(t) + w_j$
- if $0 \le t \le d_j$ and j is on time in the schedule corresponding to $F_j(t)$, we have $F_j(t) = F_{j-1}(t p_j)$
- summarizing, we get for $j = 1, \ldots, n$:

$$F_{j}(t) = \begin{cases} \min\{F_{j-1}(t-p_{j}), F_{j-1}(t) + w_{j}\} & \text{for } 0 \le t \le d_{j} \\ F_{j}(d_{j}) & \text{for } d_{j} < t \le T \end{cases}$$
(2)

DP-algorithm for $1||\sum w_j U_j|$

- initialize $F_j(t)$ according to (1)
- FOR j := 1 TO n DO

Solution FOR
$$t := 0$$
 TO T DO

• update $F_j(t)$ according to (2)

DP-algorithm for $1 || \sum w_j U_j$

- initialize $F_j(t)$ according to (1)
- ❷ FOR *j* := 1 TO *n* DO

4

- Solution FOR t := 0 TO T DO
 - update $F_j(t)$ according to (2)

- complexity is $O(n \sum_{j=1}^{n} p_j)$
- thus, algorithm is pseudopolynomial

Basic results:

- $1 || \sum T_j$ is NP-hard
- preemption does not improve the criterion value $\rightarrow 1 |pmtn| \sum T_j$ is NP-hard
- idle times do not improve the criterion value
- Lemma 1: If p_j ≤ p_k and d_j ≤ d_k, then an optimal schedule exist in which job j is scheduled before job k.
 Proof: exercise
- this lemma gives a dominance rule

Structural property for $1 || \sum T_j$

- let k be a fixed job and \hat{C}_k be latest possible completion time of job k in an optimal schedule
- define

$$\hat{d}_j = egin{cases} d_j & ext{ for } j
eq k \ \max\{d_k, \hat{C}_k\} & ext{ for } j = k \end{cases}$$

Lemma 2: Any optimal sequence w.r.t. \$\hat{d}_1, \ldots, \hat{d}_n\$ is also optimal w.r.t. \$d_1, \ldots, d_n\$.
 Proof on the board

Structural property for $1 || \sum T_i$ (cont.)

- let $d_1 \leq \ldots \leq d_n$
- let k be the job with $p_k = \max\{p_1, \dots, p_n\}$
- Lemma 1 implies that an optimal schedule exists where

$$\{1,\ldots,k-1\} \to k$$

 Lemma 3: There exists an integer δ, 0 ≤ δ ≤ n − k for which an optimal schedule exist in which

 $\{1,\ldots,k-1,k+1,\ldots,k+\delta\} \rightarrow k \text{ and } k \rightarrow \{k+\delta+1,\ldots,n\}.$

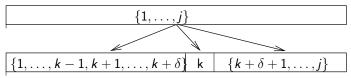
Proof on the board

DP-algorithm for $1 \parallel \sum T_j$

- Definition:
 - $F_j(t) :=$ minimum criterion value for scheduling the first j jobs starting their processing at time t
- by Lemma 3 we get: there exists some $\delta \in \{1, ..., j\}$ such that $F_j(t)$ is achieved by scheduling

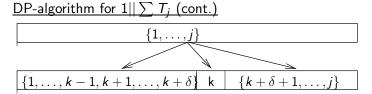
1 first jobs 1,...,
$$k - 1, k + 1, ..., k + \delta$$
 in some order
2 followed by job k starting at $t + \sum_{l=1}^{k+\delta} p_l - p_k$
3 followed by jobs $k + \delta + 1, ..., j$ in some order
where $p_k = \max_{l=1}^{j} p_l$

DP-algorithm for $1||\sum T_i$ (cont.)



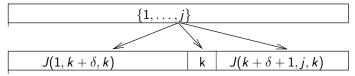
• Definition:

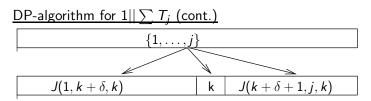
• $J(j, l, k) := \{i | i \in \{j, j+1, \dots, l\}; p_i \le p_k; i \ne k\}$



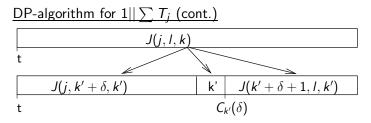
• Definition:

•
$$J(j, l, k) := \{i | i \in \{j, j+1, \dots, l\}; p_i \le p_k; i \ne k\}$$





- Definition:
 - $J(j, l, k) := \{i | i \in \{j, j+1, ..., l\}; p_i \le p_k; i \ne k\}$
 - V(J(j, l, k), t) := minimum criterion value for scheduling the jobs from J(j, l, k) starting their processing at time t



• we get:

$$V(J(j, l, k), t) = \min_{\delta} \{V(J(j, k' + \delta, k'), t) + \max\{0, C_{k'}(\delta) - d_{k'}\} + V(J(k' + \delta + 1, l, k'), C_{k'}(\delta)))\}$$
where $p_{k'} = \max\{p_{j'}|j' \in J(j, l, k)\}$ and
 $C_{k'}(\delta) = t + p_{k'} + \sum_{j' \in V(J(j, k' + \delta, k')} p_{j'}$
• $V(\emptyset, t) = 0, V(\{j\}, t) = \max\{0, t + p_j - d_j\}$

DP-algorithm for $1||\sum T_j$ (cont.)

- optimal value of $1|| \sum T_j$ is given by $V(\{1, \ldots, n\}, 0)$
- o complexity:
 - at most $O(n^3)$ subsets J(j, l, k)
 - at most $\sum p_j$ values for t
 - each recursion (evaluation V(J(j, l, k), t)) costs O(n) (at most n values for δ)

total complexity: $O(n^4 \sum p_j)$ (pseudopolynomial)