
Scheduling
Single Machine Scheduling

Tim Nieberg

Single machine models

Observation:

for non-preemptive problems and regular objectives, a
sequence in which the jobs are processed is sufficient to
describe a solution

Dispatching (priority) rules

static rules - not time dependent
e.g. shortest processing time first, earliest due date first

dynamic rules - time dependent
e.g. minimum slack first (slack= dj − pj − t; t current time)

for some problems dispatching rules lead to optimal solutions

Single machine models: 1||
∑

wjCj

Given:

n jobs with processing times p1, . . . , pn and weights
w1, . . . ,wn

Consider case: w1 = . . . = wn(= 1):

Single machine models: 1||
∑

wjCj

Given:

n jobs with processing times p1, . . . , pn and weights
w1, . . . ,wn

Consider special case: w1 = . . . = wn(= 1):

SPT-rule: shortest processing time first

Theorem: SPT is optimal for 1||
∑

Cj

Proof: by an exchange argument (on board)

Complexity: O(n log(n))

Single machine models: 1||
∑

wjCj

General case

WSPT-rule: weighted shortest processing time first, i.e.
sort jobs by increasing pj/wj -values

Theorem: WSPT is optimal for 1||
∑

wjCj

Proof: by an exchange argument (exercise)

Complexity: O(n log(n))

Further results:

1|tree|
∑

wjCj can be solved by in polynomial time
(O(n log(n)))
(see [Brucker 2004])

1|prec |
∑

Cj is NP-hard in the strong sense
(see [Brucker 2004])

Single machine models: 1|prec |fmax

Given:

n jobs with processing times p1, . . . , pn

precedence constraints between the jobs

regular functions f1, . . . , fn

objective criterion fmax = max{f1(C1), . . . , fn(Cn)}

Observation:

completion time of last job =
∑

pj

Single machine models: 1|prec |fmax

Given:

n jobs with processing times p1, . . . , pn

precedence constraints between the jobs

regular functions f1, . . . , fn

objective criterion fmax = max{f1(C1), . . . , fn(Cn)}

Observation:

completion time of last job =
∑

pj

Method

plan backwards from
∑

pj to 0

from all available jobs (jobs from which all successors have
already been scheduled), schedule job which is ’cheapest’ on
that position

Single machine models: 1|prec |fmax

S set of already scheduled jobs (initial: S = ∅)
J set of all jobs, which successors have been scheduled (initial: all jobs
t time where next job will be completed (initial: t =

∑

pj)

Algorithm 1|prec |fmax (Lawler’s Algorithm)

REPEAT

select j ∈ J such that fj(t) = mink∈J fk(t);
schedule j such that it completes at t;
add j to S , delete j from J and update J;
t := t − pj ;

UNTIL J = ∅.

Single machine models: 1|prec |fmax

Theorem: Algorithm 1|prec |fmax is optimal for 1|prec |fmax

Proof: on the board

Complexity: O(n2)

Single machine models: Maximum Lateness

Problem 1||Lmax :

Earliest due date first (EDD) is optimal for 1||Lmax

(Jackson’s EDD rule)

Proof: special case of Lawler’s algorithm

Single machine models: Maximum Lateness

Problem 1||Lmax :

Earliest due date first (EDD) is optimal for 1||Lmax

(Jackson’s EDD rule)

Proof: special case of Lawler’s algorithm

Problem 1|rj |Cmax :

1|rj |Cmax ∝ 1||Lmax

define dj := K − rj , with constant K > max rj
reversing the optimal schedule of this 1||Lmax -problem gives an
optimal schedule for the 1|rj |Cmax -problem

Single machine models: Maximum Lateness

Problem 1|prec |Lmax :

if dj < dk whenever j → k, any EDD schedule respects the
precedence constraints, i.e. in this case EDD is optimal

defining dj := min{dj , dk − pk} if j → k does not increase
Lmax in any feasible schedule

Single machine models: Maximum Lateness

Problem 1|prec |Lmax :

if dj < dk whenever j → k, any EDD schedule respects the
precedence constraints, i.e. in this case EDD is optimal

defining dj := min{dj , dk − pk} if j → k does not increase
Lmax in any feasible schedule

Algorithm 1|prec |Lmax

1 make due dates consistent:
set dj = min{dj ,mink|j→k dk − pk}

2 apply EDD rule with modified due dates

Single machine models: Maximum Lateness

Remarks on Algorithm 1|prec |Lmax

leads to an optimal solution

Step 1 can be realized in O(n2)

problem 1|prec |Lmax can be solved without knowledge of the
processing times, whereas Lawler’s Algorithm (which also
solves this problem) in general needs this knowledge
(Exercise),

Problem 1|rj , prec |Cmax ∝ 1|prec |Lmax

Single machine models: Maximum Lateness

Problem 1|rj |Lmax :

problem 1|rj |Lmax is NP-hard

Proof: by reduction from 3-PARTITION (on the board)

Single machine models: Maximum Lateness

Problem 1|pmtn, rj |Lmax :

preemptive EDD-rule: at each point in time, schedule an
available job (job, which release date has passed) with earliest
due date.

preemptive EDD-rule leads to at most k preemptions (k =
number of distinct release dates)

Single machine models: Maximum Lateness

Problem 1|pmtn, rj |Lmax :

preemptive EDD-rule: at each point in time, schedule an
available job (job, which release date has passed) with earliest
due date.

preemptive EDD-rule leads to at most k preemptions (k =
number of distinct release dates)

preemptive EDD solves problem 1|pmtn, rj |Lmax

Proof (on the board) uses following results:

Lmax ≥ r(S) + p(S) − d(S) for any S ⊂ {1, . . . , n}, where
r(S) = minj∈S rj , p(S) =

∑

j∈S pj , d(S) = maxj∈S dj

preemptive EDD leads to a schedule with
Lmax = maxS⊂{1,...,n} r(S) + p(S) − d(S)

Single machine models: Maximum Lateness

Remarks on preemptive EDD-rule for 1|pmtn, rj |Lmax :

can be implemented in O(n log(n))

is an ’on-line’ algorithm

after modification of release and due-dates, preemptive EDD
solves also 1|prec , pmtn, rj |Lmax

Single machine models: Maximum Lateness

Approximation algorithms for problem 1|rj |Lmax :

a polynomial algorithm A is called an α-approximation for
problem P if for every instance I of P algorithm A yields an
objective value fA(I) which is bounded by a factor α of the
optimal value f ∗(I); i.e. fA(I) ≤ αf ∗(I)

Single machine models: Maximum Lateness

Approximation algorithms for problem 1|rj |Lmax :

a polynomial algorithm A is called an α-approximation for
problem P if for every instance I of P algorithm A yields an
objective value fA(I) which is bounded by a factor α of the
optimal value f ∗(I); i.e. fA(I) ≤ αf ∗(I)

for the objective Lmax , α-approximation does not make sense
since Lmax may get negative

for the objective Tmax , an α-approximation with a constant α
implies P = NP (if Tmax = 0 an α-approximation is optimal)

Single machine models: Maximum Lateness

The head-body-tail problem (1|rj , dj < 0|Lmax)

n jobs

job j : release date rj (head), processing time pj (body),
delivery time qj (tail)

starting time Sj ≥ rj ;

completion time Cj = Sj + pj

delivered at Cj + qj

goal: minimize maxn
j=1 Cj + qj

Single machine models: Maximum Lateness

The head-body-tail problem (1|rj , dj < 0|Lmax), (cont.)

define dj = −qj , i.e. the due dates get negative!

result: minn
j=1 Cj + qj = minn

j=1 Cj − dj = minn
j=1 Lj = Lmax

head-body-tail problem equivalent with 1|rj |Lmax -problem
with negative due dates
Notation: 1|rj , dj < 0|Lmax

an instance of the head-body-tail problem defined by n triples
(rj , pj , qj) is equivalent to an inverse instance defined by n

triples (qj , pj , rj)

for the head-body-tail problem considering approximation
algorithms makes sense

Single machine models: Maximum Lateness

The head-body-tail problem (1|rj , dj < 0|Lmax), (cont.)

Lmax ≥ r(S) + p(S) + q(S) for any S ⊂ {1, . . . , n}, where

r(S) = min
j∈S

rj , p(S) =
∑

j∈S

pj , q(S) = min
j∈S

qj

(follows from Lmax ≥ r(S) + p(S) − d(S))

Single machine models: Maximum Lateness

Approximation ratio for EDD for problem 1|rj , dj < 0|Lmax

structure of a schedule S

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
��
�
�
�

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
� . . .c

0 Cc

Q

t = r(Q)

. . .

critical job c of a schedule: job with Lc = max Lj

critical sequence Q: jobs processed in the interval [t,Cc],
where t is the earliest time that the machine is not idle in
[t,Cc]

if qc = minj∈Q qj the schedule is optimal since then

Lmax(S) = Lc = Cc − dc = r(Q) + p(Q) + q(Q) ≤ L∗max

Notation: L∗max denotes the optimal value

Single machine models: Maximum Lateness

Approximation ratio for EDD for problem 1|rj , dj < 0|Lmax

structure of a schedule

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
��
�
�
�

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

�
�
�

�
�
�

.

0

Q

Cc

cb

Sb

Q’
r(Q)

interference job b: last scheduled job from Q with qb < qc

Lemma: For the objective value Lmax(EDD) of an EDD
schedule we have: (Proofs on the board)

1 Lmax(EDD) − L∗
max < qc

2 Lmax(EDD) − L∗
max < pb

Theorem: EDD is 2-approximation algorithm for
1|rj , dj < 0|Lmax

Single machine models: Maximum Lateness

Approximation ratio for EDD for problem 1|rj , dj < 0|Lmax

Remarks:

EDD is also a 2-approximation for 1|prec , rj , dj < 0|Lmax

(uses modified release and due dates)
by an iteration technique the approximation factor can be
reduced to 3/2

Single machine models: Maximum Lateness

Enumerative methods for problem 1|rj |Lmax

we again will use head-body-tail notation

Simple branch and bound method:

branch on level i of the search tree by selecting a job to be
scheduled on position i

if in a node of the search tree on level i the set of already
scheduled jobs is denoted by S and the finishing time of the
jobs from S by t, for position i we only have to consider jobs k

with
rk < min

j /∈S
(max{t, rj} + pj)

lower bound: solve for remaining jobs 1|rj , pmtn|Lmax

search strategy: depth first search + selecting next job via
lower bound

Single machine models: Maximum Lateness

Advanced b&b-methods for problem 1|rj |Lmax

node of search tree = restricted instance

restrictions = set of precedence constraints

branching = adding precedence constraints between certain
pairs of jobs

after adding precedence constraints, modify release and due
dates

apply EDD to instance given in a node

critical sequence has no interference job: EDD solves instance
optimal
→ backtrack
critical sequence has an interference job: branch

Single machine models: Maximum Lateness

Advanced b&b-methods for problem 1|rj |Lmax (cont.)

branching, given set Q, critical job c , interference job b, and set
Q ′ of jobs from Q following b

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
��
�
�
�

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

�
�
�

�
�
�

.

0

Q

Cc

cb

Sb

Q’
r(Q)

Lmax = Sb + pb + p(Q ′)+ q(Q ′) < r(Q ′)+ pb + p(Q ′)+ q(Q ′)

if b is scheduled between jobs of Q ′ the value is at least
r(Q ′) + pb + p(Q ′) + q(Q ′); i.e. worse than the current
schedule

Single machine models: Maximum Lateness

Advanced b&b-methods for problem 1|rj |Lmax (cont.)

branching, given sequence Q, critical job c , interference job b, and
set Q ′ of jobs from Q following b

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
��
�
�
�

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

�
�
�

�
�
�

.

0

Q

Cc

cb

Sb

Q’
r(Q)

Lmax = Sb + pb + p(Q ′)+ q(Q ′) < r(Q ′)+ pb + p(Q ′)+ q(Q ′)

if b is scheduled between jobs of Q ′ the value is at least
r(Q ′) + pb + p(Q ′) + q(Q ′); i.e. worse than the current
schedule

branch by adding either b → Q ′ or Q ′ → b

Single machine models: Maximum Lateness

Advanced b&b-methods for problem 1|rj |Lmax (cont.)

lower bounds in a node: maximum of

lower bound of parent node
r(Q ′) + p(Q ′) + q(Q ′)
r(Q ′ ∪ {b}) + p(Q ′ ∪ {b}) + q(Q ′ ∪ {b})

using the modified release and due dates

upper bound UB : best value of the EDD schedules

discard a node if lower bound ≥ UB

search strategy: select node with minimum lower bound

Single machine models: Maximum Lateness

Advanced b&b-methods for problem 1|rj |Lmax (cont.)

speed up possibility:

let k /∈ Q ′ ∪ {b} with r(Q ′) + pk + p(Q ′) + q(Q ′) ≥ UB

if r(Q ′) + p(Q ′) + pk + qk ≥ UB then add k → Q ′

if rk + pk + p(Q ′) + q(Q ′) ≥ UB then add Q ′ → k

Single machine models: Number of Tardy Jobs

Problem 1||
∑

Uj :

Structure of an optimal schedule:

set S1 of jobs meeting their due dates
set S2 of jobs being late
jobs of S1 are scheduled before jobs from S2

jobs from S1 are scheduled in EDD order
jobs from S2 are scheduled in an arbitrary order

Result: a partition of the set of jobs into sets S1 and S2 is
sufficient to describe a solution

Single machine models: Number of Tardy Jobs

Algorithm 1||
∑

Uj

1 enumerate jobs such that d1 ≤ . . . ≤ dn;

2 S1 := ∅; t := 0;

3 FOR j:=1 TO n DO

4 S1 := S1 ∪ {j}; t := t + pj ;

5 IF t > dj THEN

6 Find job k with largest pk value in S1;

7 S1 := S1 \ {k}; t := t − pk ;

8 END

9 END

Single machine models: Number of Tardy Jobs

Remarks Algorithm 1||
∑

Uj

Principle: schedule jobs in order of increasing due dates and
always when a job gets late, remove the job with largest
processing time; all removed jobs are late

complexity: O(n log(n))

Example: n = 5; p = (7, 8, 4, 6, 6); d = (9, 17, 18, 19, 21)

Single machine models: Number of Tardy Jobs

Remarks Algorithm 1||
∑

Uj

Principle: schedule jobs in order of increasing due dates and
always when a job gets late, remove the job with largest
processing time; all removed jobs are late

complexity: O(n log(n))

Example: n = 5; p = (7, 8, 4, 6, 6); d = (9, 17, 18, 19, 21)

0 5 10 15 20

1 2 3

d3

Single machine models: Number of Tardy Jobs

Remarks Algorithm 1||
∑

Uj

Principle: schedule jobs in order of increasing due dates and
always when a job gets late, remove the job with largest
processing time; all removed jobs are late

complexity: O(n log(n))

Example: n = 5; p = (7, 8, 4, 6, 6); d = (9, 17, 18, 19, 21)

0 5 10 15 20

1 3 4 5

d5

Single machine models: Number of Tardy Jobs

Remarks Algorithm 1||
∑

Uj

Principle: schedule jobs in order of increasing due dates and
always when a job gets late, remove the job with largest
processing time; all removed jobs are late

complexity: O(n log(n))

Example: n = 5; p = (7, 8, 4, 6, 6); d = (9, 17, 18, 19, 21)

0 5 10 15 20

3 4 5

Algorithm 1||
∑

Uj computes an optimal solution
Proof on the board

Single machine models: Weighted Number of Tardy Jobs

Problem 1||
∑

wjUj

problem 1||
∑

wjUj is NP-hard even if all due dates are the
same; i.e. 1|dj = d |

∑

wjUj is NP-hard
Proof on the board (reduction from PARTITION)

priority based heuristic (WSPT-rule):
schedule jobs in increasing pj/wj order

Single machine models: Weighted Number of Tardy Jobs

Problem 1||
∑

wjUj

problem 1||
∑

wjUj is NP-hard even if all due dates are the
same; i.e. 1|dj = d |

∑

wjUj is NP-hard
Proof on the board (reduction from PARTITION)

priority based heuristic (WSPT-rule):
schedule jobs in increasing pj/wj order

WSPT may perform arbitrary bad for 1||
∑

wjUj :

Single machine models: Weighted Number of Tardy Jobs

Problem 1||
∑

wjUj

problem 1||
∑

wjUj is NP-hard even if all due dates are the
same; i.e. 1|dj = d |

∑

wjUj is NP-hard
Proof on the board (reduction from PARTITION)

priority based heuristic (WSPT-rule):
schedule jobs in increasing pj/wj order

WSPT may perform arbitrary bad for 1||
∑

wjUj :

n = 3; p = (1, 1,M); w = (1 + ǫ, 1,M − ǫ); d =
(1 + M, 1 + M, 1 + M)

∑

wjUj(WSPT)/
∑

wjUj(opt) = (M − ǫ)/(1 + ǫ)

Single machine models: Weighted Number of Tardy Jobs

Dynamic Programming for 1||
∑

wjUj

assume d1 ≤ . . . ≤ dn

as for 1||
∑

Uj a solution is given by a partition of the set of
jobs into sets S1 and S2 and jobs in S1 are in EDD order

Definition:

Fj(t) := minimum criterion value for scheduling the first j jobs
such that the processing time of the on-time jobs is at most t

Fn(T) with T =
∑n

j=1 pj is optimal value for problem
1||

∑

wjUj

Initial conditions:

Fj(t) =

{

∞ for t < 0; j = 1, . . . , n

0 for t ≥ 0; j = 0
(1)

Single machine models: Weighted Number of Tardy Jobs

Dynamic Programming for 1||
∑

wjUj (cont.)

if 0 ≤ t ≤ dj and j is late in the schedule corresponding to
Fj(t), we have Fj(t) = Fj−1(t) + wj

if 0 ≤ t ≤ dj and j is on time in the schedule corresponding to
Fj(t), we have Fj(t) = Fj−1(t − pj)

Single machine models: Weighted Number of Tardy Jobs

Dynamic Programming for 1||
∑

wjUj (cont.)

if 0 ≤ t ≤ dj and j is late in the schedule corresponding to
Fj(t), we have Fj(t) = Fj−1(t) + wj

if 0 ≤ t ≤ dj and j is on time in the schedule corresponding to
Fj(t), we have Fj(t) = Fj−1(t − pj)

summarizing, we get for j = 1, . . . , n:

Fj(t) =

{

min{Fj−1(t − pj),Fj−1(t) + wj} for 0 ≤ t ≤ dj

Fj(dj) for dj < t ≤ T

(2)

Single machine models: Weighted Number of Tardy Jobs

DP-algorithm for 1||
∑

wjUj

1 initialize Fj(t) according to (1)

2 FOR j := 1 TO n DO

3 FOR t := 0 TO T DO

4 update Fj(t) according to (2)

5
∑

wjUj(OPT) = Fn(dn)

Single machine models: Weighted Number of Tardy Jobs

DP-algorithm for 1||
∑

wjUj

1 initialize Fj(t) according to (1)

2 FOR j := 1 TO n DO

3 FOR t := 0 TO T DO

4 update Fj(t) according to (2)

5
∑

wjUj(OPT) = Fn(dn)

complexity is O(n
∑n

j=1 pj)

thus, algorithm is pseudopolynomial

Single machine models: Total Tardiness

Basic results:

1||
∑

Tj is NP-hard

preemption does not improve the criterion value
→ 1|pmtn|

∑

Tj is NP-hard

idle times do not improve the criterion value

Lemma 1: If pj ≤ pk and dj ≤ dk , then an optimal schedule
exist in which job j is scheduled before job k.
Proof: exercise

this lemma gives a dominance rule

Single machine models: Total Tardiness

Structural property for 1||
∑

Tj

let k be a fixed job and Ĉk be latest possible completion time
of job k in an optimal schedule

define

d̂j =

{

dj for j 6= k

max{dk , Ĉk} for j = k

Lemma 2: Any optimal sequence w.r.t. d̂1, . . . , d̂n is also
optimal w.r.t. d1, . . . , dn.
Proof on the board

Single machine models: Total Tardiness

Structural property for 1||
∑

Tj (cont.)

let d1 ≤ . . . ≤ dn

let k be the job with pk = max{p1, . . . , pn}

Lemma 1 implies that an optimal schedule exists where

{1, . . . , k − 1} → k

Lemma 3: There exists an integer δ, 0 ≤ δ ≤ n − k for which
an optimal schedule exist in which

{1, . . . , k−1, k+1, . . . , k+δ} → k and k → {k+δ+1, . . . , n}.

Proof on the board

Single machine models: Total Tardiness

DP-algorithm for 1||
∑

Tj

Definition:

Fj(t) := minimum criterion value for scheduling the first j jobs
starting their processing at time t

by Lemma 3 we get:
there exists some δ ∈ {1, . . . , j} such that Fj(t) is achieved by
scheduling

1 first jobs 1, . . . , k − 1, k + 1, . . . , k + δ in some order
2 followed by job k starting at t +

∑k+δ
l=1 pl − pk

3 followed by jobs k + δ + 1, . . . , j in some order

where pk = maxj
l=1 pl

Single machine models: Total Tardiness

DP-algorithm for 1||
∑

Tj (cont.)

k {k + δ + 1, . . . , j}

{1, . . . , j}

{1, . . . , k − 1, k + 1, . . . , k + δ}

Definition:

J(j , l , k) := {i |i ∈ {j , j + 1, . . . , l}; pi ≤ pk ; i 6= k}

Single machine models: Total Tardiness

DP-algorithm for 1||
∑

Tj (cont.)

k {k + δ + 1, . . . , j}

{1, . . . , j}

{1, . . . , k − 1, k + 1, . . . , k + δ}

Definition:

J(j , l , k) := {i |i ∈ {j , j + 1, . . . , l}; pi ≤ pk ; i 6= k}

k

{1, . . . , j}

J(1, k + δ, k) J(k + δ + 1, j , k)

Single machine models: Total Tardiness

DP-algorithm for 1||
∑

Tj (cont.)

k

{1, . . . , j}

J(1, k + δ, k) J(k + δ + 1, j , k)

Definition:

J(j , l , k) := {i |i ∈ {j , j + 1, . . . , l}; pi ≤ pk ; i 6= k}
V (J(j , l , k), t) := minimum criterion value for scheduling the
jobs from J(j , l , k) starting their processing at time t

Single machine models: Total Tardiness

DP-algorithm for 1||
∑

Tj (cont.)

t

t

J(j , l , k)

J(j , k ′ + δ, k ′) k’ J(k ′ + δ + 1, l , k ′)

Ck ′(δ)

we get:
V (J(j , l , k), t) = minδ {V (J(j , k ′ + δ, k ′), t)

+ max{0,Ck′ (δ) − dk′}
+V (J(k ′ + δ + 1, l , k ′),Ck′ (δ)))}

where pk′ = max{pj ′ |j
′ ∈ J(j , l , k)} and

Ck′(δ) = t + pk′ +
∑

j ′∈V (J(j ,k′+δ,k′) pj ′

V (∅, t) = 0, V ({j}, t) = max{0, t + pj − dj}

Single machine models: Total Tardiness

DP-algorithm for 1||
∑

Tj (cont.)

optimal value of 1||
∑

Tj is given by V ({1, . . . , n}, 0)

complexity:

at most O(n3) subsets J(j , l , k)
at most

∑

pj values for t

each recursion (evaluation V (J(j , l , k), t)) costs O(n) (at most
n values for δ)

total complexity: O(n4
∑

pj) (pseudopolynomial)

