Scheduling
 RECAP: Complexity Theory

Tim Nieberg

Recap: Complexity Theory

- mathematical framework to study the difficulty of algorithmic problems

Notations/Definitions

- problem: generic description of a problem (e.g. $1 \| \sum C_{j}$)
- instance of a problem: given set of numerical data (e.g. n, p_{1}, \ldots, p_{n})
- size of an instance $/$: length of the string necessary to specify the data (Notation: $|I|$)
- binary encoding: $|I|=n+\log \left(p_{1}\right)+\ldots+\log \left(p_{n}\right)$
- unary encoding: $|I|=n+p_{1}+\ldots+p_{n}$

Complexity Theory

Notations/Definitions

- efficiency of an algorithm: upper bound on number of steps depending on the size of the instance (worst case consideration)
- big O-notation: for an $O(f(n))$ algorithm a constant $c>0$ and an integer n_{0} exist, such that for an instance $/$ with size $n=|I|$ and $n \geq n_{0}$ the number of steps is bounded by $c f(n)$ Example: $7 n^{3}+230 n+10 \log (n)$ is $O\left(n^{3}\right)$
- (pseud)polynomial algorithm: $O(p(|\||))$ algorithm, where p is a polynomial and I is coded binary (unary)
Example: an $O\left(n \log \left(\sum p_{j}\right)\right)$ algorithm is a polynomial algorithm and an $O\left(n \sum p_{j}\right)$ algorithm is a pseudopolynomial algorithm

Recap: Complexity Theory

Classes \mathcal{P} and $\mathcal{N P}$

- a problem is (pseudo) polynomial solvable if a (pseudo) polynomial algorithm exists which solves the problem
- Class \mathcal{P} : contains all decision problems which are polynomial solvable
- Class $\mathcal{N} \mathcal{P}$: contains all decision problems for which - given an 'yes' instance - the correct answer, given a proper clue, can be verified by a polynomial algorithm
Remark: each optimization problem has a corresponding decision problem by introducing a threshold for the objective value (does a schedule exist with objective smaller k ?)

Recap: Complexity Theory

Polynomial reduction

- a decision problem P polynomially reduces to a problem Q, if a polynomial function g exists that transforms instances of P to instances of Q such that I is a 'yes' instance of P if and only is $g(I)$ is a 'yes' instance of Q
Notation: $P \propto Q$
NP-complete
- a decision problem $P \in \mathcal{N P}$ is called NP-complete if all problems from the class $\mathcal{N P}$ polynomially reduce to P
- an optimization problem is called NP-hard if the corresponding decision problem is NP-complete

Recap: Complexity Theory

Examples of NP-complete problems:

- SATISFIABILITY: decision problem in Boolean logic, Cook in 1967 showed that all problems from $\mathcal{N P}$ polynomially reduce to it
- PARTITION:
- given n positive integers s_{1}, \ldots, s_{n} and $b=1 / 2 \sum_{j=1}^{n} s_{j}$
- does there exist a subset $J \subset I=\{1, \ldots, n\}$ such that

$$
\sum_{j \in J} s_{j}=b=\sum_{j \in \backslash \backslash J} s_{j}
$$

Recap: Complexity Theory

Examples of NP-complete problems (cont.):

- 3-PARTITION:
- given $3 n$ positive integers $s_{1}, \ldots, s_{3 n}$ and b with $b / 4<s_{j}<b / 2, j=1, \ldots, 3 n$ and $b=1 / n \sum_{j=1}^{3 n} s_{j}$
- do there exist disjoint subsets $J_{i} \subset I=\{1, \ldots, 3 n\}$ such that

$$
\sum_{j \in J_{i}} s_{j}=b ; \quad i=1, \ldots, n
$$

Recap: Complexity Theory

Proving NP-completeness
If an NP-complete problem P can be polynomially reduced to a problem $Q \in \mathcal{N P}$, than this proves that Q is NP-complete (transitivity of polynomial reductions)

Example: PARTITION $\propto P 2 \| C_{\text {max }}$
Proof: on the board

Famous open problem: Is $\mathcal{P}=\mathcal{N} \mathcal{P}$?

- solving one NP-complete problem polynomially, would imply $\mathcal{P}=\mathcal{N} \mathcal{P}$

