Scheduling RECAP: Complexity Theory

Tim Nieberg

 mathematical framework to study the difficulty of algorithmic problems

Notations/Definitions

- problem: generic description of a problem (e.g. $1||\sum C_j$)
- instance of a problem: given set of numerical data (e.g. n, p_1, \ldots, p_n)
- size of an instance *I*: length of the string necessary to specify the data (Notation: |*I*|)
 - binary encoding: $|I| = n + \log(p_1) + \ldots + \log(p_n)$
 - unary encoding: $|I| = n + p_1 + \ldots + p_n$

Notations/Definitions

- efficiency of an algorithm: upper bound on number of steps depending on the size of the instance (worst case consideration)
- big O-notation: for an O(f(n)) algorithm a constant c > 0and an integer n_0 exist, such that for an instance I with size n = |I| and $n \ge n_0$ the number of steps is bounded by cf(n)<u>Example</u>: $7n^3 + 230n + 10\log(n)$ is $O(n^3)$
- (pseud)polynomial algorithm: O(p(|I|)) algorithm, where p is a polynomial and I is coded binary (unary) <u>Example</u>: an $O(n \log(\sum p_j))$ algorithm is a polynomial algorithm and an $O(n \sum p_j)$ algorithm is a pseudopolynomial algorithm

Recap: Complexity Theory

$\underline{\mathsf{Classes}\;\mathcal{P}\;\mathsf{and}\;\mathcal{NP}}$

- a problem is (pseudo)polynomial solvable if a (pseudo)polynomial algorithm exists which solves the problem
- Class \mathcal{P} : contains all decision problems which are polynomial solvable
- Class \mathcal{NP} : contains all decision problems for which given an 'yes' instance the correct answer, given a proper clue, can be verified by a polynomial algorithm

<u>Remark</u>: each optimization problem has a corresponding decision problem by introducing a threshold for the objective value (does a schedule exist with objective smaller k?)

Polynomial reduction

• a decision problem P polynomially reduces to a problem Q, if a polynomial function g exists that transforms instances of Pto instances of Q such that I is a 'yes' instance of P if and only is g(I) is a 'yes' instance of Q<u>Notation</u>: $P \propto Q$

NP-complete

- a decision problem P ∈ NP is called NP-complete if all problems from the class NP polynomially reduce to P
- an optimization problem is called NP-hard if the corresponding decision problem is NP-complete

Examples of NP-complete problems:

- SATISFIABILITY: decision problem in Boolean logic, Cook in 1967 showed that all problems from \mathcal{NP} polynomially reduce to it
- PARTITION:
 - given *n* positive integers s_1, \ldots, s_n and $b = 1/2 \sum_{i=1}^n s_i$
 - does there exist a subset $J \subset I = \{1, \dots, n\}$ such that

$$\sum_{j\in J} s_j = b = \sum_{j\in I\setminus J} s_j$$

Examples of NP-complete problems (cont.):

- 3-PARTITION:
 - given 3*n* positive integers s_1, \ldots, s_{3n} and *b* with $b/4 < s_j < b/2, \ j = 1, \ldots, 3n$ and $b = 1/n \sum_{j=1}^{3n} s_j$
 - do there exist disjoint subsets $J_i \subset I = \{1, \dots, 3n\}$ such that

$$\sum_{j\in J_i} s_j = b; \quad i = 1, \dots, n$$

Recap: Complexity Theory

Proving NP-completeness

If an NP-complete problem P can be polynomially reduced to a problem $Q \in \mathcal{NP}$, than this proves that Q is NP-complete (transitivity of polynomial reductions)

Example: $PARTITION \propto P2||C_{max}|$ Proof: on the board

Famous open problem: Is $\mathcal{P} = \mathcal{NP}$?

• solving one NP-complete problem polynomially, would imply $\mathcal{P}=\mathcal{NP}$