
Scheduling

RECAP: Complexity Theory

Tim Nieberg

Recap: Complexity Theory

mathematical framework to study the difficulty of algorithmic
problems

Notations/Definitions

problem: generic description of a problem (e.g. 1||
∑

Cj)

instance of a problem: given set of numerical data (e.g. n,
p1, . . . , pn)

size of an instance I : length of the string necessary to specify
the data (Notation: |I |)

binary encoding: |I | = n + log(p1) + . . . + log(pn)
unary encoding: |I | = n + p1 + . . . + pn

Complexity Theory

Notations/Definitions

efficiency of an algorithm: upper bound on number of steps
depending on the size of the instance (worst case
consideration)

big O-notation: for an O(f (n)) algorithm a constant c > 0
and an integer n0 exist, such that for an instance I with size
n = |I | and n ≥ n0 the number of steps is bounded by cf (n)
Example: 7n3 + 230n + 10 log(n) is O(n3)

(pseud)polynomial algorithm: O(p(|I |)) algorithm, where p is
a polynomial and I is coded binary (unary)
Example: an O(n log(

∑
pj)) algorithm is a polynomial

algorithm and an O(n
∑

pj) algorithm is a pseudopolynomial
algorithm

Recap: Complexity Theory

Classes P and NP

a problem is (pseudo)polynomial solvable if a
(pseudo)polynomial algorithm exists which solves the problem

Class P: contains all decision problems which are polynomial
solvable

Class NP: contains all decision problems for which - given an
’yes’ instance - the correct answer, given a proper clue, can be
verified by a polynomial algorithm

Remark: each optimization problem has a corresponding decision
problem by introducing a threshold for the objective value (does a
schedule exist with objective smaller k?)

Recap: Complexity Theory

Polynomial reduction

a decision problem P polynomially reduces to a problem Q, if
a polynomial function g exists that transforms instances of P

to instances of Q such that I is a ’yes’ instance of P if and
only is g(I) is a ’yes’ instance of Q

Notation: P ∝ Q

NP-complete

a decision problem P ∈ NP is called NP-complete if all
problems from the class NP polynomially reduce to P

an optimization problem is called NP-hard if the
corresponding decision problem is NP-complete

Recap: Complexity Theory

Examples of NP-complete problems:

SATISFIABILITY: decision problem in Boolean logic, Cook in
1967 showed that all problems from NP polynomially reduce
to it

PARTITION:

given n positive integers s1, . . . , sn and b = 1/2
∑n

j=1
sj

does there exist a subset J ⊂ I = {1, . . . , n} such that

∑

j∈J

sj = b =
∑

j∈I\J

sj

Recap: Complexity Theory

Examples of NP-complete problems (cont.):

3-PARTITION:

given 3n positive integers s1, . . . , s3n and b with
b/4 < sj < b/2, j = 1, . . . , 3n and b = 1/n

∑
3n

j=1
sj

do there exist disjoint subsets Ji ⊂ I = {1, . . . , 3n} such that

∑

j∈Ji

sj = b; i = 1, . . . , n

Recap: Complexity Theory

Proving NP-completeness
If an NP-complete problem P can be polynomially reduced to a
problem Q ∈ NP, than this proves that Q is NP-complete
(transitivity of polynomial reductions)

Example: PARTITION ∝ P2||Cmax

Proof: on the board

Famous open problem: Is P = NP?

solving one NP-complete problem polynomially, would imply
P = NP

