
Scheduling

Interval Scheduling, Reservations,

and Timetabling

Tim Nieberg

Service Models

activities, which are restricted by time windows, have to be
assigned to resources

often activities use several different resources in parallel

the availability of resources may vary over time

it may even be possible to influence the availability of
resources for a certain cost

a nice three field notation as for the manufacturing models
does not exist, since the problems are more diverse

Service Models

Characteristics

n activities/jobs with

processing times p1, . . . , pn

release dates r1, . . . , rn
due dates d1, . . . , dn

weights w1, . . . , wn

m resources/machines with

time dependent availability
properties which allow only certain subsets of jobs to be
processed on certain machines
possibility to extend resource availability for a certain price
. . .

Service Models

Possible Objectives

maximize number of jobs processed

maximize total amount of processing

maximize profit of jobs processed (here job weights are given)

...

Service Models

Areas of Application

Reservation systems

Timetabling

Scheduling and timetabling in sport and entertainment

Planning, scheduling and timetabling in transportation

Workforce scheduling

Interval Scheduling, Reservation Systems

Definition Reservation System

Given:

m parallel machines
n jobs

job has to be processed within given time interval

it may not be possible to process all jobs

Goal: Select a subset of jobs which

can be scheduled feasible and
maximizes a given objective

Interval Scheduling, Reservation Systems

Two principle models

1 Systems without slack

job fills interval between release and due date completely, i.e.

pj = dj − rj

Also called fixed interval

2 Systems with slack

interval between release and due date of a job may have some
slack, i.e.

pj ≤ dj − rj

Interval Scheduling, Reservation Systems

Applications Reservation Systems

hotel room reservation

car rental

reserving machines in a factory

timetabling (additionally constraints)

...

Reservation Systems with Slack

Relation with (Classical) Scheduling

the reservation problem with slack is related to problem
Pm|rj |Lmax and problem Pm|rj |

∑

wjUj :

for problem Pm|rj |Lmax a solution with Lmax ≤ 0 corresponds
to a solution of the reservation problem with profit =

∑n

j=1
wj

for problem Pm|rj |
∑

wjUj a solution with
∑

wjUj = C

corresponds to a solution of the reservation problem with profit
=

∑n

j=1
wj − C

since 1|rj |Lmax is NP-hard in the strong sense, the reservation
problem is also NP-hard in the strong sense

due to this relation, we will not consider this type

Reservation Systems without Slack (interval scheduling)

Notations and Definition

m parallel machines

n jobs; for job j :

release date rj
due date dj

processing time pj = dj − rj
set Mj of machines on which j may be processed
weight wij : profit of processing j on machine i

Objective: maximize profit of the processed jobs:

wij = 1: number of jobs processed
wij = wj : weighted number of jobs processed

Reservation Systems without Slack

Integer Programming Formulation - Notation and Variables

time periods 1, . . . ,H

Jl : set of jobs needing processing in period l

variables xij :

xij =

{

1 job j on machine i

0 else

Remark: determining all sets Jl is not polynomial but already
pseudo-polynomial since H may not be polynomially bounded

Reservation Systems without Slack

Integer Programming Formulation - Model

max

m
∑

i=1

n
∑

j=1

wijxij

m
∑

i=1

xij ≤ 1 j = 1, . . . , n

∑

j∈Jl

xij ≤ 1 i = 1, . . . ,m; l = 1, . . . ,H

xij ∈ {0, 1}

Reservation Systems without Slack

Easy Special Cases: pj = 1 for all jobs j

each job is available exactly one time period

problem splits into independent problems, one for each time
period

resulting problem for period l :

max

m
∑

i=1

n
∑

j=1

wijxij

m
∑

i=1

xij ≤ 1 j = 1, . . . , n

∑

j∈Jl

xij ≤ 1 i = 1, . . . ,m

xij ∈ {0, 1}

Reservation Systems without Slack

Easy Special Cases: pj = 1 for all jobs j (cont.)

this problem is an assignment problem and can be solved
polynomially

the number of relevant time periods is at most n

Consequence: the special case is polynomially solvable

Reservation Systems without Slack

Easy Special Cases: wij = 1 and Mj = {1, . . . ,m} for all i , j

all machines are equal and the goal is to maximize the
number of jobs processed

we assume r1 ≤ . . . ≤ rn

Notation: J is set of already selected jobs for processing

initial: J = ∅

Reservation Systems without Slack

Algorithm: wij = 1 and Mj = {1, . . . ,m} for all i , j

FOR j = 1 TO n DO
IF a machine is available at rj THEN

assign j to that machine;
J := J ∪ {j}

ELSE

determine j∗ s.t. Cj∗ = max
k∈J

Ck = max
k∈J

rk + pk ;

IF Cj = rj + pj < Cj∗ THEN

remove job j∗ and assign job j to machine of j∗;
J := J ∪ {j} \ {j∗}

Theorem: The above algorithm solves the problem optimal.
(Proof almost straightforward)

Reservation Systems without Slack

Example wij = 1 and Mj = {1, . . . ,m} for all i , j

2 machines and 8 jobs
j 1 2 3 4 5 6 7 8

rj 0 1 1 3 4 5 6 6

dj 5 3 4 8 6 7 9 8

Iteration 1: j = 1

1 5 10

1M1

M2

Iteration 2: j = 2

1 5 10

1M1

M2
2

Reservation Systems without Slack

Example wij = 1 and Mj = {1, . . . ,m} for all i , j (cont.)
j 1 2 3 4 5 6 7 8

rj 0 1 1 3 4 5 6 6

dj 5 3 4 8 6 7 9 8

Iteration 3: j = 3, j∗ = 1

1 5 10

3M1

M2
2

Iteration 4: j = 4

1 5 10

3M1

M2
2 4

Reservation Systems without Slack

Example wij = 1 and Mj = {1, . . . ,m} for all i , j (cont.)
j 1 2 3 4 5 6 7 8

rj 0 1 1 3 4 5 6 6

dj 5 3 4 8 6 7 9 8

Iteration 5: j = 5

1 5 10

3M1

M2
2 4

5

Iteration 6: j = 6, j∗ = 4

1 5 10

3M1

M2
2

5

6

Reservation Systems without Slack

Example wij = 1 and Mj = {1, . . . ,m} for all i , j (cont.)
j 1 2 3 4 5 6 7 8

rj 0 1 1 3 4 5 6 6

dj 5 3 4 8 6 7 9 8

Iteration 7: j = 7

1 5 10

3M1

M2
2

5

6

7

Iteration 8: j = 8, j∗ = 7

1 5 10

3M1

M2
2

5

6

8

Reservation Systems without Slack

Another Version of the Reservation Problem

wij = 1 for all i , j

unlimited number of identical machines

all jobs have to be processed

Goal: use a minimum number of machines

Assume: r1 ≤ . . . ≤ rn

Notation: M: set of machines used;

initial: M = ∅

Reservation Systems without Slack

Algorithm for Another Version of the Reservation Problem
i = 0;
FOR j = 1 TO n DO

IF machine from M is free at rj THEN
assign j to a free machine

ELSE

i:=i+1;
add machine i to M;
assign job j to machine i .

Theorem: The above algorithm gives the minimal number of
machines to process all n jobs.
(Proof is straightforward)

Reservation Systems without Slack

Algorithm for Another Version - Example
j 1 2 3 4 5 6 7 8

rj 0 1 1 3 4 5 6 6

dj 5 3 4 8 6 7 9 8

Iteration 1: j = 1

1 5 10

1M1

M2

Iteration 2: j = 2

1 5 10

1M1

M2
2

Reservation Systems without Slack

Algorithm for Another Version - Example (cont.)
j 1 2 3 4 5 6 7 8

rj 0 1 1 3 4 5 6 6

dj 5 3 4 8 6 7 9 8

Iteration 3: j = 3

1 5 10

1

2

3

M1

M2

M3

Iteration 4: j = 4

1 5 10

1

2

3

M1

M2

M3

4

Reservation Systems without Slack

Algorithm for Another Version - Example (cont.)
j 1 2 3 4 5 6 7 8

rj 0 1 1 3 4 5 6 6

dj 5 3 4 8 6 7 9 8

Iteration 5: j = 5

1 5 10

1

2

3

M1

M2

M3

4

5

Iteration 6: j = 6

1 5 10

1

2

3

M1

M2

M3

4

5

6

Reservation Systems without Slack

Algorithm for Another Version - Example (cont.)
j 1 2 3 4 5 6 7 8

rj 0 1 1 3 4 5 6 6

dj 5 3 4 8 6 7 9 8

Iteration 7: j = 7

1 5 10

1

2

3

M1

M2

M3

4

5

6

7

Iteration 8: j = 8

1 5 10

1

2

3

4

5

6

7

8

M1

M2

M3

M4

Reservation Systems without Slack

Reformulation Another Version

The problem can be reformulated as a Graph Coloring
problem

n nodes (node j ↔ job j)
arc (j , k) if job j and k overlap
assign a color to each node such that two nodes connected by
an arc have different colors
Goal: find a coloring with a minimal number of colors

Remarks

jobs which overlap have to be on different machines,
nodes connected by an arc have different colors,
→ each color corresponds to a machine
graph coloring in general is NP-hard

Reservation Systems without Slack

Reformulation Example
j 1 2 3 4 5 6 7 8

rj 0 1 1 3 4 5 6 6

dj 5 3 4 8 6 7 9 8
corresponding graph coloring problem:

1 2

3

4

56

8

7

Timetabling with Tooling Constraints

Notations and Definition

unlimited number of identical parallel machines

n jobs with processing times p1, . . . , pn

set T of tools

job j needs a subset Tj ⊂ T of tools for its processing

jobs needing the same tool can not be processed in parallel

Objectives:

Feasibility Version:
find a schedule completing all jobs within a given time horizon
H

Optimization Version:
find a schedule for all jobs with a minimal makespan

Timetabling with Tooling Constraints

General Result:

Theorem: Even for pj = 1 for all j the problem is NP-hard.
Proof (on the board) by reduction from Graph Coloring. It is
based on the following

Observation: The problem - for pj = 1 - can be reformulated
as a graph coloring problem in a similar way as for a special
version of the interval scheduling problem!

n nodes (node j ↔ job j)
arc (j , k) if job j and k require the same tool
Question: Can the graph be colored with H different colors?
(color ↔ timeslot)

Timetabling with Tooling Constraints

Special Case: feasibility version with pj = 1 for all j

Remark: Even though the considered interval scheduling
problem and the considered timetabling problem reduce to the
same graph coloring problem, the timetabling problem with
tooling constraints is harder!

Reason: For the interval scheduling problem the ’used
resources’ (time slots) are adjacent, whereas the tools may
not be ordered in such a way

Remark: The graph resulting from the interval scheduling
problem is a so called ’interval graph’

Timetabling with Tooling Constraints

Special Case: feasibility version with pj = 1 for all j (cont.)

degree d(v) for a node v : number of arcs adjacent to v

given a partial coloring of the nodes:
saturation level sat(v) of a node v : number of different
colored nodes already connected to v in the partial coloring

Timetabling with Tooling Constraints

Heuristic Special Case:
feasibility version with pj = 1 for all j

Sort nodes in decreasing order of degrees;

Color a node v with maximal degree d(v) with color 1;

WHILE nodes are uncolored DO

calculate the maximal saturation level max − sat

of uncolored nodes v ;

from all nodes v with saturation level sat(v) =
max − sat, choose any with maximal degree in the
uncolored subgraph;

Color the selected node with the color with lowest
possible number;

Timetabling with Tooling Constraints

Example Heuristic Special Case:
feasibility version with pj = 1 for all j
Data:

Jobs 1 2 3 4 5 6 7 8

pj 1 1 1 1 1 1 1 1

Tool 1 1 1 1 0 0 0 1 0

Tool 2 0 1 0 1 0 0 0 1

Tool 3 1 0 0 0 1 0 1 0

Tool 4 0 0 1 0 0 1 0 1

Tool 5 0 0 0 1 0 0 0 0

Timetabling with Tooling Constraints

Example Heuristic Special Case:
feasibility version with pj = 1 for all j

Data:
Jobs 1 2 3 4 5 6 7 8

pj 1 1 1 1 1 1 1 1

Tool 1 1 1 1 0 0 0 1 0

Tool 2 0 1 0 1 0 0 0 1

Tool 3 1 0 0 0 1 0 1 0

Tool 4 0 0 1 0 0 1 0 1

Tool 5 0 0 0 1 0 0 0 0

Corresponding Graph

1 2

3

4

56

88

7

Timetabling with Tooling Constraints

Example Heuristic Special Case:
feasibility version with pj = 1 for all j

Data:
Jobs 1 2 3 4 5 6 7 8

pj 1 1 1 1 1 1 1 1

Tool 1 1 1 1 0 0 0 1 0

Tool 2 0 1 0 1 0 0 0 1

Tool 3 1 0 0 0 1 0 1 0

Tool 4 0 0 1 0 0 1 0 1

Tool 5 0 0 0 1 0 0 0 0

Corresponding Graph

1 2

3

4

56

88

7

Preprocessing:
Jobs(nodes) 1 2 3 4 5 6 7 8

degree 4 5 5 2 2 2 4 4

Timetabling with Tooling Constraints

Example Heuristic: feasibility version with pj = 1 for all j (cont.)
Jobs(nodes) 1 2 3 4 5 6 7 8

degree 4 5 5 2 2 2 4 4

Initial:

d(2) = max d(v);
color 2 red (color 1)

Iteration 1:

max − sat = 1
sat(v) = max − sat; v =
1, 3, 4, 7, 8
d(3) = max{d(v)|v =
1, 3, 4, 7, 8}
color 3 green (color 2)

Initial Graph

1 2

3

4

56

88

7

Timetabling with Tooling Constraints

Example Heuristic: feasibility version with pj = 1 for all j (cont.)
Initial:

d(2) = max d(v);
color 2 red (color 1)

Iteration 1:

max − sat = 1
sat(v) = max − sat; v =
1, 3, 4, 7, 8
d(3) = max{d(v)|v =
1, 3, 4, 7, 8}
color 3 green (color 2)

Graph after Iteration 1

1 2

3

4

56

88

7

Timetabling with Tooling Constraints

Example Heuristic: feasibility version with pj = 1 for all j (cont.)
Jobs(nodes) 1 2 3 4 5 6 7 8

saturation level 2 - - 1 0 1 2 2
degree 2 - - 1 2 1 2 2

Iteration 2:

max − sat = 2
sat(v) = max−sat; v = 1, 7, 8
d(1) = max{d(v)|v = 1, 7, 8}
color 1 yellow (color 3)

Graph after Iteration 1

1 2

3

4

56

88

7

Timetabling with Tooling Constraints

Example Heuristic: feasibility version with pj = 1 for all j (cont.)
Jobs(nodes) 1 2 3 4 5 6 7 8

saturation level - - - 1 1 1 3 2
degree - - - 1 1 1 1 2

Iteration 2: max − sat = 2

sat(v) = max−sat; v = 1, 7, 8
d(1) = max{d(v)|v = 1, 7, 8}
color 1 yellow (color 3)

Iteration 3: max − sat = 3

sat(7) = max − sat;
color 1 blue (color 4)

Graph after Iteration 2

1 2

3

4

56

88

7

Timetabling with Tooling Constraints

Example Heuristic: feasibility version with pj = 1 for all j (cont.)
Iteration 2:

max − sat = 2
sat(v) = max−sat; v = 1, 7, 8
d(1) = max{d(v)|v = 1, 7, 8}
color 1 yellow (color 3)

Iteration 3:

max − sat = 3
sat(7) = max − sat;
color 1 blue (color 4)

Graph after Iteration 3

1 2

3

4

56

88

7

Timetabling with Tooling Constraints

Example Heuristic: feasibility version with pj = 1 for all j (cont.)
Jobs(nodes) 1 2 3 4 5 6 7 8

saturation level - - - 1 2 1 - 2
degree - - - 1 0 1 - 2

Iteration 4:

max − sat = 2
sat(v) = max − sat; v = 5, 8
d(8) = max{d(v)|v = 5, 8}
color 8 yellow (color 3)

Graph after Iteration 3

1 2

3

4

56

88

7

Timetabling with Tooling Constraints

Example Heuristic: feasibility version with pj = 1 for all j (cont.)
Jobs(nodes) 1 2 3 4 5 6 7 8

saturation level - - - 2 2 2 - -
degree - - - 0 0 0 - -

Iteration 4: max − sat = 2

sat(v) = max − sat; v = 5, 8
d(8) = max{d(v)|v = 5, 8}
color 8 yellow (color 3)

Iteration 5: max − sat = 2

sat(v) = max−sat; v = 4, 5, 6
d(4) = max{d(v)|v = 4, 5, 6}
color 4 green (color 2)

Graph after Iteration 4

1 2

3

4

56

88

7

Timetabling with Tooling Constraints

Example Heuristic: feasibility version with pj = 1 for all j (cont.)
Iteration 4:

max − sat = 2
sat(v) = max − sat; v = 5, 8
d(8) = max{d(v)|v = 5, 8}
color 8 yellow (color 3)

Iteration 5:

max − sat = 2
sat(v) = max−sat; v = 4, 5, 6
d(4) = max{d(v)|v = 4, 5, 6}
color 4 green (color 2)

Graph after Iteration 5

1 2

3

4

56

88

7

Timetabling with Tooling Constraints

Example Heuristic: feasibility version with pj = 1 for all j (cont.)
Jobs(nodes) 1 2 3 4 5 6 7 8

saturation level - - - - 2 2 - -
degree - - - - 0 0 - -

Iteration 6:

max − sat = 2
sat(v) = max − sat; v = 5, 6
d(5) = max{d(v)|v = 5, 6}
color 5 red (color 1)

Graph after Iteration 5

1 2

3

4

56

88

7

Timetabling with Tooling Constraints

Example Heuristic: feasibility version with pj = 1 for all j (cont.)
Jobs(nodes) 1 2 3 4 5 6 7 8

saturation level - - - - - 2 - -
degree - - - - - 0 - -

Iteration 6:

max − sat = 2
sat(v) = max − sat; v = 5, 6
d(5) = max{d(v)|v = 5, 6}
color 5 red (color 1)

Iteration 7:

only 6 is left
color 6 red (color 1)

Graph after Iteration 6

1 2

3

4

56

88

7

Timetabling with Tooling Constraints

Example Heuristic: feasibility version with pj = 1 for all j (cont.)

Iteration 6:

max − sat = 2
sat(v) = max − sat; v = 5, 6
d(5) = max{d(v)|v = 5, 6}
color 5 red (color 1)

Iteration 7:

only 6 is left
color 6 red (color 1)

Final Coloring Graph

1 2

3

4

56

88

7

Timetabling with Tooling Constraints

Example Heuristic: feasibility version with pj = 1 for all j (cont.)

Solution:

jobs 2, 5, and 6 at time 1
jobs 3 and 4 at time 2
jobs 1 and 8 at time 3
job 7 at time 4

Final Coloring Graph

1 2

3

4

56

88

7

Timetabling with Tooling Constraints

Relation to Interval Scheduling

Remark:
For the given example the tools can not be ordered such that
for all jobs the used tools are adjacent (i.e. the resulting
graph is not an interval graph). Thus the instance can not be
seen as an interval scheduling instance.

Change of the data:
assume job 2 needs besides tool 1 and 2 also tool 4

Timetabling with Tooling Constraints

Relation to Interval Scheduling (cont.)

New data:
Jobs 1 2 3 4 5 6 7 8

pj 1 1 1 1 1 1 1 1

Tool 1 1 1 1 0 0 0 1 0

Tool 2 0 1 0 1 0 0 0 1

Tool 3 1 0 0 0 1 0 1 0

Tool 4 0 1 1 0 0 1 0 1

Tool 5 0 0 0 1 0 0 0 0

New Graph:

1 2

3

4

56

88

7

Timetabling with Tooling Constraints

Relation to Interval Scheduling (cont.)

Tool renumbering:
Jobs 1 2 3 4 5 6 7 8

pj 1 1 1 1 1 1 1 1

Tool 3 1 0 0 0 1 0 1 0

Tool 1 1 1 1 0 0 0 1 0

Tool 4 0 1 1 0 0 1 0 1

Tool 2 0 1 0 1 0 0 0 1

Tool 5 0 0 0 1 0 0 0 0

Transformation:

time 1 tool 3

time 2 tool 1

time 3 tool 4

time 4 tool 2

time 5 tool 5

Timetabling with Tooling Constraints

Relation to Interval Scheduling (cont.)

Tool renumbering:
Jobs 1 2 3 4 5 6 7 8

pj 1 1 1 1 1 1 1 1

Tool 3 1 0 0 0 1 0 1 0

Tool 1 1 1 1 0 0 0 1 0

Tool 4 0 1 1 0 0 1 0 1

Tool 2 0 1 0 1 0 0 0 1

Tool 5 0 0 0 1 0 0 0 0

Transformation:

time 1 tool 3

time 2 tool 1

time 3 tool 4

time 4 tool 2

time 5 tool 5

Interval Scheduling Prob.:

Job 1 2 3 4 5 6 7 8

rj 0 1 1 3 0 2 0 2
dj 2 4 3 5 1 3 2 4

pj 2 3 2 2 1 1 2 2

