Models in
 Transportation

Tim Nieberg

Transportation Models

- large variety of models due to the many modes of transportation
- roads
- railroad
- shipping
- airlines
- as a consequence different type of equipment and resources with different characteristics are involved
- cars, trucks, roads
- trains, tracks and stations
- ships and ports
- planes and airports
- consider two specific problems

Tanker Scheduling

Basic Characteristics

- consider the problem from the view of a company
- the planning process normally is done in a 'rolling horizon' fashion
- company operates a fleet of ships consisting of
- own ships $\{1, \ldots, T\}$
- chartered ships
- the operating costs of these two types are different
- only the own ships are scheduled
- using chartered ships only leads to costs and these costs are given by the spot market

Tanker Scheduling

Basic Characteristics (cont.)

- each own ship i is characterized by its
- capacity capi
- draught dri
- range of possible speeds
- location I_{i} and time r_{i} at which it is ready to start next trip - ...

Tanker Scheduling

Basic Characteristics (cont.)

- the company has n cargos to be transported
- cargo j is characterized by
- type t_{j} (e.g. crude type)
- quantity p_{j}
- load port port ${ }_{j}^{l}$ and delivery port port ${ }_{j}^{d}$
- time windows $\left[r_{j}^{\prime}, d_{j}^{\prime}\right]$ and $\left[r_{j}^{d}, d_{j}^{d}\right]$ for loading and delivery
- load and unload times t_{j}^{l} and t_{j}^{d}
- costs c_{j}^{*} denoting the price which has to be paid on the spot market to transport cargo j (estimate)

Tanker Scheduling

Basic Characteristics (cont.)

- there are p different ports
- port k is characterized by
- its location
- limitations on the physical characteristics (e.g. length, draught, deadweight, ...) of the ships which may enter the port
- local government rules (e.g. in Nigeria a ship has to be loaded above 90% to be allowed to sail)
- ...

Tanker Scheduling

Basic Characteristics (cont.)

- the objective is to minimize the total cost of transporting all cargos
- hereby a cargo can be assigned to a ship of the company or 'sold' on the spot market and thus be transported by a chartered ship
- costs consist of
- operating costs for own ships
- spot charter rates
- fuel costs
- port charges, which depend on the deadweight of the ship

Tanker Scheduling

ILP modeling

- straightforward choice of variables would be to use 0 - 1-variables for assigning cargos to ships
- problem: these assignment variables do not define the schedule/route for the ship and thus feasibility and costs of the assignment can not be determined
- alternative approach: generate a set of possible schedules/routes for each ship and afterwards use assignment variables to assign schedules/routes to ships
- problem splits up into two subproblems:
- generate schedules for ships
- assign schedules to ships

Tanker Scheduling

ILP modeling - generate schedules

- a schedule for a ship consist of an assignment of cargos to the ship and a sequence in which the corresponding ports are visited
- generation of schedules can be done by ad-hoc heuristics which consider
- ship constraints like capacity, speed, availability, ...
- port constraints
- time windows of cargos
- each schedule leads to a certain cost
- for each ship enough potential schedules should be generated in order to get feasible and good solutions for the second subproblem

Tanker Scheduling

ILP modeling - generate schedules (cont.)

- the output of the first subproblem is
- a set S_{i} of possible schedules for ship i
- each schedule $I \in S_{i}$ is characterized by
- a vector $\left(a_{i 1}^{\prime}, \ldots, a_{i n}^{\prime}\right)$ where $a_{i j}^{\prime}=1$ if cargo j is transported by ship i in schedule I and 0 otherwise
- costs c_{i}^{\prime} denoting the incremental costs of operating ship i under schedule $/$ versus keeping it idle over the planning horizon
- profit $\pi_{i}^{\prime}=\sum_{j=1}^{n} a_{i j}^{\prime} c_{j}^{*}-c_{i}^{\prime}$ by using schedule $/$ for ship i instead of paying the spot market

Tanker Scheduling

ILP modeling - generate schedules (cont.)

- Remarks:
- all the feasibility constraints of the ports and ships are now within the schedule
- all cost aspects are summarized in the values c_{i}^{\prime} resp. π_{i}^{\prime}
- the sequences belonging to the schedules determine feasibility and the costs c_{i}^{\prime} but are not part of the output since they are not needed in the second subproblem

Tanker Scheduling

ILP modeling - assign schedules to ships

- variables $x_{i}^{\prime}= \begin{cases}1 & \text { if ship } i \text { follows schedule } / \\ 0 & \text { else }\end{cases}$
- objective: $\max \sum_{i=1}^{T} \sum_{l \in S_{i}} \pi_{i}^{l} x_{i}^{\prime}$
- constraint:
- $\sum_{i=1}^{T} \sum_{l \in S_{i}} a_{i j}^{\prime} x_{i}^{\prime} \leq 1 ; \quad j=1, \ldots, n$ (each cargo at most once)
- $\sum_{l \in S_{i}} x_{i}^{\prime} \leq 1 ; \quad i=1, \ldots, T$ (each ship at most one schedule)

Tanker Scheduling

ILP modeling - assign schedules to ships (cont.)

- the ILP model is a set-packing problem and well studied in the literature
- can be solved by branch and bound procedures
- possible branchings:
- chose a variable x_{i}^{\prime} and branch on the two possibilities $x_{i}^{\prime}=0$ and $x_{i}^{\prime}=1$ select x_{i}^{\prime} on base of the solution of the LP-relaxation: choose a variable with value close to 0.5
- chose a ship i and branch on the possible schedules $I \in S_{i}$ selection of ship i is e.g. be done using the LP-relaxation: choose a ship with a highly fractional solution

Tanker Scheduling

ILP modeling - assign schedules to ships (cont.)

- lower bounds can be achieved by generating feasible solutions via clever heuristics (feasible solution = lower bound since we have a maximization problem)
- upper bounds can be obtained via relaxing the integrality constraints and solving the resulting LP (note, that this LP-solution is also used for branching!)
- for a small example, the behavior of the branch and bound method is given in the handouts

Tanker Scheduling

Remarks Two Phase Approach

- in general the solution after solving the two subproblems is only a heuristic solution of the overall problem
- if in the first subproblem all possible schedules/routes for each ship are generated (i.e. S_{i} is equal to the set $S_{i}^{\text {all }}$ of all feasible schedules for ship i), the optimal solution of the second subproblem is an optimal solution for the overall problem
- for real life instances the cardinalities of the sets $S_{i}^{\text {all }}$ are too large to allow a complete generation (i.e. S_{i} is always a (small) subset of $S_{i}^{\text {all }}$)
- colum generation can be used to improve the overall quality of the resulting solution

Train Timetabling

General Remarks

- in the railway world lots of scheduling problems are of importance
- scheduling trains in a timetable
- routing of material
- staff planning
- ...
- currently lots of subproblems are investigated
- the goal is to achieve an overall decision support system for the whole planning process
- we consider one important subproblem

Train Timetabling

Decomposition of the Train Timetabling

- mostly the overall railway network consists of some major stations and 'lines/corridors' connecting them

Am Amersfoort
As Amsterdam Centraal
DH Den Haag Centraal
R Rotterdam Centraal
U Utrecht Centraal

- a corridor normally consists of two independent one-way tracks
- having good timetables for the trains in the corridors makes it often easy to find timetables for the trains on the other lines

Train Timetabling

Scheduling Train on a Track

- consider a track between two major stations
- in between the two mayor stations several smaller stations exists

- trains may or may not stop at these stations
- trains can only overtake each other at stations

Train Timetabling

Problem Definition Track Scheduling

- time period $1, \ldots, q$, where q is the length of the planning period (typically measured in minutes; e.g. $q=1440$)
- $L+1$ stations $0, \ldots, L$
- L consecutive links;
- link j connects station $j-1$ and j
- trains travel in the direction from station 0 to L
- T : set of trains that are candidates to run during planning period
- for link $j, T_{j} \subset T$ denotes the trains passing the link

Train Timetabling

Problem Definition Track Scheduling (cont.)

- train schedules are depicted in so-called time-space diagrams

- diagrams enable user to see conflicts

Train Timetabling

Problem Definition Track Scheduling (cont.)

- train schedules are depicted in so-called time-space diagrams

- diagrams enable user to see conflicts

Train Timetabling

Problem Definition Track Scheduling (cont.)

- each train has an most desirable timetable (arrivals, departures, travel time on links, stopping time at stations), achieved e.g. via marketing department
- putting all these most desirable timetables together, surely will lead to conflicts on the track
- possibilities to change a timetable:
- slow down train on link
- increase stopping time at a station
- modify departure time at first station
- cancel the train

Train Timetabling

Problem Definition Track Scheduling (cont.)

- cost of deviating from a given time \hat{t} :
- specifies the revenue loss due to a deviation from \hat{t}
- the cost function has its minimum in \hat{t}, is convex, and often modeled by a piecewise linear function

- piecewise linear helps in ILP models!

Train Timetabling

Variables for Track Scheduling

- variables represent departure and arrival times from stations
- $y_{i j}$: time train i enters link j
$=$ time train i departs from station $j-1$
(defined if $i \in T_{j}$)
- $z_{i j}$: time train i leaves link j
$=$ time train i arrives at station j
(defined if $i \in T_{j}$)
- $c_{i j}^{d}\left(y_{i j}\right)\left(c_{i j}^{a}\left(z_{i j}\right)\right.$ denotes the cost resulting from the deviation of the departure time $y_{i j}$ (arrival time $z_{i j}$) from its most desirable value

Train Timetabling

Variables for Track Scheduling (cont.)

- variables resulting from the departures and arrivals times:
- $\tau_{i j}=z_{i j}-y_{i j}$: travel time of train i on link j
- $\delta_{i j}=y_{i, j+1}-z_{i j}$: stopping time of train i at station j
- $c_{i j}^{\tau}\left(\tau_{i j}\right)\left(c_{i j}^{\delta}\left(\delta_{i j}\right)\right.$ denotes the cost resulting from the deviation of the travel time $\tau_{i j}$ (stopping time $\delta_{i j}$) from its most desirable value
- all cost functions $c_{i j}^{d}, c_{i j}^{a}, c_{i j}^{\tau}, c_{i j}^{\delta}$ have the mentioned structure

Train Timetabling

Objective function

- minimize

$$
\begin{gathered}
\sum_{j=1}^{L} \sum_{i \in T_{j}}\left(c_{i j}^{d}\left(y_{i j}\right)+c_{i j}^{a}\left(z_{i j}\right)+c_{i j}^{\tau}\left(z_{i j}-y_{i j}\right)\right) \\
+\sum_{j=1}^{L-1} \sum_{i \in T_{j}} c_{i j}^{\delta}\left(y_{i, j+1}-z_{i j}\right)
\end{gathered}
$$

Train Timetabling

Constraints

- minimum travel times for train i over link $j: \tau_{i j}^{\text {min }}$
- minimum stopping times for train i at station $j: \delta_{i j}^{m i n}$
- safety distance:
- minimum headway between departure times of train h and train i from station j : $H_{h i j}^{d}$
- minimum headway between arrival times of train h and train i at station j : $H_{h i j}^{a}$
- lower and upper bounds on departure and arrival times:

$$
y_{i j}^{\min }, y_{i j}^{\max }, z_{i j}^{\min }, z_{i j}^{\max }
$$

Train Timetabling

Constraints (cont.)

- to be able to model the minimum headway constraints, variables have to be introduced which control the order of the trains on the links
- $x_{h i j}= \begin{cases}1 & \text { if train } h \text { immediately preceeds train } i \text { on link } j \\ 0 & \text { else }\end{cases}$
- using the variables $x_{h i j}$, the minimum headway constraints can be formulated via 'big M'-constraints:

$$
\begin{gathered}
y_{i, j+1}-y_{h, j+1}+\left(1-x_{h i j}\right) M \geq H_{h i j}^{d} \\
z_{i j}-z_{h j}+\left(1-x_{h i j}\right) M \geq H_{h i j}^{a}
\end{gathered}
$$

Train Timetabling

Constraints (cont.)

- two dummy trains 0 and $*$ are added, representing the start and end of the planning period (fix departure and arrival times appropriate ensuring that 0 is sequenced before all other trains and $*$ after all other trains)

Train Timetabling

Constraints (cont.)

$$
\begin{array}{rl}
y_{i j} \geq y_{i j}^{m i n} & j=1, \ldots, L ; i \in T_{j} \\
y_{i j} \leq y_{i j}^{m a x} & j=1, \ldots, L ; i \in T_{j} \\
z_{i j} \geq z_{i j}^{m i n} & j=1, \ldots, L ; i \in T_{j} \\
z_{i j} \leq z_{i j}^{m a x} & j=1, \ldots, L ; i \in T_{j} \\
z_{i j}-y_{i j} \geq \tau_{i j}^{m i n} & j=1, \ldots, L ; i \in T_{j} \\
y_{i, j+1}-z_{i j} \geq \delta_{i j}^{m i n} & j=1, \ldots, L-1 ; i \in T_{j} \\
y_{i, j+1}-y_{h, j+1}+\left(1-x_{h i j}\right) M \geq H_{h i j}^{d} & j=0, \ldots, L-1 ; i, h \in T_{j} \\
z_{i j}-z_{h j}+\left(1-x_{h i j}\right) M \geq H_{h i j}^{a} & j=1, \ldots, L ; i, h \in T_{j} \\
\sum_{h \in T_{j} \backslash\{i\}} x_{h i j}=1 & j=1, \ldots, L ; i \in T_{j} \\
\sum_{i \in T_{j} \backslash\{h\}} x_{h i j}=1 & j=1, \ldots, L ; h \in T_{j} \\
x_{h i j} \in\{0,1\} & j=1, \ldots, L ; i, h \in T_{j}
\end{array}
$$

Remarks on ILP Model

- the number of 0-1 variables gets already for moderate instances quite large
- the single track problem is only a subproblem in the whole time tabling process and needs therefore to be solved often
- as a consequence, the computational time for solving the single track problem must be small
- this asks for heuristic approaches to solve the single track problem

Train Timetabling

Decomposition Approach: General Idea

- schedule the trains iteratively one by one
- initially, the two dummy trains 0 and $*$ are scheduled
- the selection of the next train to be scheduled is done on base of priorities
- possible priorities are
- earliest desired departure time
- decreasing order of importance (importance may be e.g. measured by train type, speed, expected revenue, ...)
- smallest flexibility in departure and arrival
- combinations of the above

Train Timetabling

Decomposition Approach: Realization

- T_{0} : set of already scheduled trains
- initially $T_{0}=\{0, *\}$
- after each iteration a schedule of the trains from T_{0} is given
- however, for the next iteration only the sequence in which the trains from T_{0} traverse the links is taken into account
- $S_{j}=\left(0=j_{0}, j_{1}, \ldots, j_{n_{j}}, j_{n_{j}+1}=*\right)$: sequence of trains from T_{0} on link j
- if train k is chosen to be scheduled in an iteration, we have to insert k in all sequences S_{j} where $k \in T_{j}$
- this problem is called $\operatorname{Insert}\left(k, T_{0}\right)$

Train Timetabling

ILP Formulation of $\operatorname{Insert}\left(k, T_{0}\right)$

Adapt the 'standard' constraints and the objective to T_{0} :

$$
\min \sum_{j=1}^{L} \sum_{i \in T_{j}}\left(c_{i j}^{d}\left(y_{i j}\right)+c_{i j}^{a}\left(z_{i j}\right)+c_{i j}^{\tau}\left(z_{i j}-y_{i j}\right)\right)
$$

$$
+\sum_{j=1}^{L_{1}} \sum_{i \in T_{j}} c_{i j}^{\delta}\left(y_{i, j+1}-z_{i j}\right)
$$

subject to

$$
\begin{aligned}
y_{i j} \geq y_{i j}^{\min } & j=1, \ldots, L ; i \in T_{0} \cap T_{j} \\
y_{i j} \leq y_{i j}^{\max } & j=1, \ldots, L ; i \in T_{0} \cap T_{j} \\
z_{i j} \geq z_{i j}^{\min } & j=1, \ldots, L ; i \in T_{0} \cap T_{j} \\
z_{i j} \leq z_{i j}^{\max } & j=1, \ldots, L ; i \in T_{0} \cap T_{j} \\
z_{i j}-y_{i j} \geq \tau_{i j}^{\min } & j=1, \ldots, L ; i \in T_{0} \cap T_{j} \\
y_{i, j+1}-z_{i j} \geq \delta i j^{\min } & j=1, \ldots, L-1 ; i \in T_{0} \cap T_{j}
\end{aligned}
$$

Train Timetabling

ILP Formulation of $\operatorname{Insert}\left(k, T_{0}\right)$ (cont.)

- adapt $y_{i, j+1}-y_{h, j+1}+\left(1-x_{h i j}\right) M \geq H_{h i j}^{d}$ for trains from T_{0}

$$
y_{j_{i+1}, j}-y_{j_{i}, j} \geq H_{j_{j i+1}, j-1}^{d} \quad \text { for } j=1, \ldots, L, i=0, \ldots, n_{j}
$$

- adapt $z_{i j}-z_{h j}+\left(1-x_{h i j}\right) M \geq H_{h i j}^{a}$ for trains from T_{0}

$$
z_{j_{i+1}, j}-z_{j_{i}, j} \geq H_{j_{j} j_{i+1} j}^{a} \text { for } j=1, \ldots, L, i=0, \ldots, n_{j}
$$

Train Timetabling

ILP Formulation of $\operatorname{Insert}\left(k, T_{0}\right)$ (cont.)

- insert k on link j via variables

$$
x_{i j}= \begin{cases}1 & \text { if train } k \text { immediately precedes train } j_{i} \text { on link } j \\ 0 & \text { else }\end{cases}
$$

- new constraints for $j=1, \ldots, L, i=0, \ldots, n_{j}$:
- $y_{k, j}-y_{j, j}+\left(1-x_{i j}\right) M \geq H_{j_{j k j}}^{d}$
- $y_{j_{i+1}, j}-y_{k, j}+\left(1-x_{i j}\right) M \geq H_{k_{j+1} j}^{d}$
- $z_{k, j}-z_{j, j}+\left(1-x_{i j}\right) M \geq H_{j, k j}^{a}$
- $z_{j_{i+1}, j}-z_{k, j}+\left(1-x_{i j}\right) M \geq H_{k_{j+1} j}^{a}$
- 0-1 constraints and sum constraint on $x_{i j}$ values

Train Timetabling

Remarks on ILP Formulation of $\operatorname{Insert}\left(k, T_{0}\right)$

- the ILP Formulation of $\operatorname{Insert}\left(k, T_{0}\right)$ has the same order of continuous constraints $\left(y_{i j}, z_{i j}\right)$ but far fewer 0-1 variables than the original MIP
- a preprocessing may help to fix $x_{i j}$ variables since on base of the lower and upper bound on the departure and arrival times of train k many options may be impossible
- solving Insert $\left(k, T_{0}\right)$ may be done by branch and bound

Train Timetabling

Solving the overall problem

- an heuristic for the overall problem may follow the ideas of the shifting bottleneck heuristic
- select a new train k (machine) which is most 'urgent'
- solve for this new train k the problem $\operatorname{Insert}\left(k, T_{0}\right)$
- reoptimize the resulting schedule by rescheduling the trains from T_{0}
- rescheduling of a train $I \in T_{0}$ can be done by solving the problem Insert $\left(I, T_{0} \cup\{k\} \backslash\{I\}\right)$ using the schedule which results from deleting train / from the schedule achieved by $\operatorname{Insert}\left(k, T_{0}\right)$

