András Frank
frank@cs.elte.hu

(In the solutions, it is feasible to rely on such basic results as Kőnig theorem, Menger theorem, MFMC theorem and algorithm, Dijkstra algorithm, etc.)

1. Given two posets P_{1} and P_{2} on a common groundset V, prove that there is a subset $A \subseteq V$ which is an antichain both in P_{1} and in P_{2} such that, for every element $x \in V-A$, there is a $p \in A$ that is larger than x in at least one of the two posets.
2. Let $D=(V, A)$ be a digraph with two specified nodes s and t. Design a polynomial algorithm to find two disjont subsets S and T of V for which $s \in S, t \in T$ and $\delta(S)+\delta(T)$ is as small as possible where $\delta(X)$ denotes the number of edges leaving X.
3. Prove that a 2-edge-connected graph has a smooth strongly connected orientation. (Smooth means that $|\varrho(v)-\delta(v)| \leq 1$ for every node $v \in V$.)
4. Design a polynomial algorithm to decide for a bipartite graph $G=(S, T ; E)$ and positive integer k whether
(A) $|\Gamma(X)| \geq|X|+1$ holds for every nonempty $X \subseteq S$,
(B) $|\Gamma(X)| \geq|X|+k$ holds for every nonempty $X \subseteq S$.
5. An interval I is the union of the set $\mathcal{I}=\left\{I_{1}, \ldots, I_{k}\right\}$ of closed subintervals. Prove that it is possible to select some pairwise disjoint members of \mathcal{I} so that their total length is at least half of the length of I.
6. Decide if the following statement is true or not. If a poset can be partitioned into longest chains, then it can be partitioned into largest antichains.
7. Let D be an acycilic digraph and $k \geq 2$ an integer. Design a polynomial time algorithm for deciding whether or not every circuit C of D has at least $|C| / k$ edges in both directions.
8. Let $G=(V, E)$ be a k-edge-connected graph with $|V| \geq 2$ that is minimal in the sense that $G-e$ is not k-edge-connected for every $e \in E$. Prove that G has a node of degree k. Is it true that G always has two such nodes?
9. We placed the nodes of the two colour classes of an edge-weighted bipartite graph $G=(S, T ; E)$ on two horizontal lines in the plane. The edges of G are represented by straight line segments. Two such edges are said to be crossing if they share an inner node in common.
(A) Design a polynomial algorithm to compute a cross-free matching in G whose total weight is maximum.
(B) Design a polynomial algorithm to compute a cross-free forest in G whose total weight is maximum.
10. Prove that a tournament includes a node from which every other node can be reached by a one-way path of length at most 2 .
