Exercise Set 4

Exercise 4.1:

A Steiner topology is called full if all terminals have degree one. Let $f(k)$ denote the number of full topologies for the Rectilinear Steiner tree problem with k terminals in which all Steiner points have degree 3. Derive and prove a formula on $f(k)$.
(4 points)

Exercise 4.2:

Let F be a shortest rectilinear Steiner tree for a set $Z \subset \mathbb{R}^{2}$ of terminals. For $u, v \in V(F)$ define

$$
\begin{aligned}
\mathcal{L}(u, v) & :=\left\{p \in \mathbb{R}^{2}:\|p-u\|_{1}<\|u-v\|_{1} \text { and }\|p-v\|_{1}<\|u-v\|_{1}\right\} \\
\mathcal{R}(u, v) & :=\left\{p \in \mathbb{R}^{2}:\|u-v\|_{1}=\|u-p\|_{1}+\|p-v\|_{1}\right\}
\end{aligned}
$$

Prove:
(a) If $\{u, v\} \in E(F)$, then $\mathcal{L}(u, v)$ contains no terminal, Steiner point or interior segment point of F.
(b) If $u, v, w \in E(F)$ such that $\{u, w\}$ and $\{w, v\}$ are perpendicular segments of F, then $\mathcal{R}(u, v)^{\circ}$ contains no terminal, Steiner point or interior segment point of F.

Definition: Let $T \subset \mathbb{R}^{2}$ be a finite set and let $r \in \mathbb{R}^{2}$.

- A rectilinear shortest path tree for $T+r$ is a rectilinear Steiner tree F for instance $T \cup\{r\}$ such that the $r-t$ path contained in F is a shortest path w.r.t. L_{1} distances for all $t \in T$.
- A minimum cost rectilinear shortest path tree for $T+r$ is a rectilinear shortest path tree F for which $c(F):=\sum_{\{v, w\} \in E(F)}\|v-w\|_{1}$ is minimum.
- We denote the cost of a minimum cost rectilinear shortest path tree by $\operatorname{rspt}(T+r)$.
- For $p_{1}, p_{2}, p_{3} \in \mathbb{R}^{2}$ we define $\operatorname{med}\left(p_{1}, p_{2}, p_{3}\right) \in \mathbb{R}^{2}$ to be the point with x - (resp. y) coordinate equal to the median of the x - (resp. y) coordinates of p_{1}, p_{2} and p_{3}.

Exercise 4.3:

Consider the following algorithm:

```
F:=(T\cup{r},\emptyset)
while }|T|>1\mathrm{ do
    choose }\mp@subsup{t}{1}{},\mp@subsup{t}{2}{}\inT\mathrm{ maximizing |med (r, tr , t 
    include med (r, tr, , t2) to V }F(F
    connect med (r,t1, t2) with }\mp@subsup{t}{1}{}\mathrm{ and }\mp@subsup{t}{2}{}\mathrm{ in }
    set T=(T\{\mp@subsup{t}{1}{},\mp@subsup{t}{2}{}})\cup{\operatorname{med}(r,\mp@subsup{t}{1}{},\mp@subsup{t}{2}{})}
include an edge between r and the remaining element of T to E(F)
return F
```


Example of the algorithm. Root r is plotted in green. The blue vertices depict T.

Let F be the output of the algorithm. Prove:
(a) F is a rectilinear shortest path Steiner tree.
(b) $c(F) \leq 2 \cdot \operatorname{rspt}(T+r)$ if $r=(0,0)$ and all terminals $t \in T$ are located in the first quadrant.
(Remark: The result holds for general instances)
(c) The approximation ratio of 2 is tight.
(d) The algorithm can be implemented to run in $\mathcal{O}(|T| \cdot \log (|T|))$ time.

$$
(2+6+4+4 \text { points })
$$

Deadline: Thursday, May 16th, before the lecture.

