Exercise Set 5

Exercise 5.1:

For a finite set $V \subseteq \mathbb{R}^2$, the ℓ_1 -Voronoi diagram consists of the regions

$$P_v := \left\{ x \in \mathbb{R}^2 : ||x - v||_1 = \min_{w \in V} ||x - w||_1 \right\}$$

for $v \in V$. The ℓ_1 -Delaunay triangulation of V is the graph

$$(V, \{\{v, w\} \subseteq V, v \neq w, |P_v \cap P_w| > 1\}).$$

For simplicity you can assume that the slope of each straight line connecting two elements of V is neither 1 nor -1.

- (a) Show that the ℓ_1 -Delaunay triangulation is a planar graph.
- (b) Show that the ℓ_1 -Delaunay contains a minimum-length spanning tree.
- (c) Describe a $\frac{3}{2}$ -factor approximation algorithm for the RECTILINEAR STEINER TREE PROBLEM running in $O(|V|\log|V|)$ using the fact that the Delaunay triangulation can be computed in $O(|V|\log|V|)$ time.

(6 points)

Definition:

For $t \in \mathbb{R}^2$, we denote the x- (res. y-) coordinate of t by x(t) (resp. y(t)).

Exercise 5.2:

Let $T \subset \mathbb{R}^2$ be a finite set of terminals.

- (a) Let $t' \in T$ such that $x(t') < \min\{x(t) : t \in T \setminus \{t'\}\}$. Define $t'' = (\min\{x(t) : t \in T \setminus \{t'\}\}, y(t'))$. Show that there exists a shortest rectilinear Steiner tree for T consisting of a shortest rectilinear Steiner tree for $(T \setminus \{t'\}) \cup \{t''\}$ plus the edge $\{t', t''\}$.
- (b) Let H be the Hanan grid of T and let $E' \subseteq E(H[T])$ be a set of edges such that no two vertical edges share the same row and no two horizontal edges share the same column of H. Show that there exists a shortest rectilinear Steiner tree for T containing all edges in E'.

Exercise 5.3:

Let $T \subset \mathbb{R}^2$ be a finite set of terminals located on k parallel horizontal lines (i.e. $|\{y(t): t \in T\}| = k$). We assume that the elements of T are sorted by their x-coordinate in non-decreasing order. Prove:

- (a) If k=2, a shortest rectilinear Steiner tree for T can be found in linear time.
- (b) If k is constant and on each of the k parallel lines there is a terminal with x-coordinate $\min\{x(t):t\in T\}$, a shortest rectilinear Steiner tree for T can be found in linear time.

(4+2 points)

Exercise 5.4:

Given a chip area A and a set C of circuits. A move bound for a circuit C is a subset $A_C \subseteq A$ in which C must be placed entirely. Assume h(C) = w(C) = 1 for all $C \in C$ and that A and each move bound A_C , $C \in C$, are axis-parallel rectangles with integral coordinates.

Describe an algorithm with running time polynomial in $|\mathcal{C}|$ that decides whether there exists a feasible placement such that all move bound constraints are met.

(4 points)

Exercise 5.5:

Show that the following decision problem is NP-complete:

Instance: $k \in \mathbb{N}$ and an instance of the STANDARD PLACEMENT PROBLEM without blockages where all circuits have unit width and unit height and all net weights are equal to 1.

Question: Is there a feasible solution with bounding box net length at most k? (4 points)

Deadline: Thursday, June 6th, before the lecture.