Exercise Set 5

Exercise 5.1:

For a finite set $V \subseteq \mathbb{R}^{2}$, the ℓ_{1}-Voronoi diagram consists of the regions

$$
P_{v}:=\left\{x \in \mathbb{R}^{2}:\|x-v\|_{1}=\min _{w \in V}\|x-w\|_{1}\right\}
$$

for $v \in V$. The $\ell_{1}-$ Delaunay triangulation of V is the graph

$$
\left(V,\left\{\{v, w\} \subseteq V, v \neq w,\left|P_{v} \cap P_{w}\right|>1\right\}\right)
$$

For simplicity you can assume that the slope of each straight line connecting two elements of V is neither 1 nor -1 .
(a) Show that the ℓ_{1}-Delaunay triangulation is a planar graph.
(b) Show that the ℓ_{1}-Delaunay contains a minimum-length spanning tree.
(c) Describe a $\frac{3}{2}$-factor approximation algorithm for the RECTILINEAR STEINER Tree Problem running in $O(|V| \log |V|)$ using the fact that the Delaunay triangulation can be computed in $O(|V| \log |V|)$ time.

Definition:

For $t \in \mathbb{R}^{2}$, we denote the x - (res. y-) coordinate of t by $x(t)$ (resp. $y(t)$).

Exercise 5.2:

Let $T \subset \mathbb{R}^{2}$ be a finite set of terminals.
(a) Let $t^{\prime} \in T$ such that $x\left(t^{\prime}\right)<\min \left\{x(t): t \in T \backslash\left\{t^{\prime}\right\}\right\}$. Define $t^{\prime \prime}=(\min \{x(t)$: $\left.\left.t \in T \backslash\left\{t^{\prime}\right\}\right\}, y\left(t^{\prime}\right)\right)$. Show that there exists a shortest rectilinear Steiner tree for T consisting of a shortest rectilinear Steiner tree for $\left(T \backslash\left\{t^{\prime}\right\}\right) \cup\left\{t^{\prime \prime}\right\}$ plus the edge $\left\{t^{\prime}, t^{\prime \prime}\right\}$.
(b) Let H be the Hanan grid of T and let $E^{\prime} \subseteq E(H[T])$ be a set of edges such that no two vertical edges share the same row and no two horizontal edges share the same column of H. Show that there exists a shortest rectilinear Steiner tree for T containing all edges in E^{\prime}.

Exercise 5.3:

Let $T \subset \mathbb{R}^{2}$ be a finite set of terminals located on k parallel horizontal lines (i.e. $|\{y(t): t \in T\}|=k)$. We assume that the elements of T are sorted by their x coordinate in non-decreasing order. Prove:
(a) If $k=2$, a shortest rectilinear Steiner tree for T can be found in linear time.
(b) If k is constant and on each of the k parallel lines there is a terminal with x-coordinate $\min \{x(t): t \in T\}$, a shortest rectilinear Steiner tree for T can be found in linear time.

Exercise 5.4:

Given a chip area A and a set \mathcal{C} of circuits. A move bound for a circuit C is a subset $A_{C} \subseteq A$ in which C must be placed entirely. Assume $h(C)=w(C)=1$ for all $C \in \mathcal{C}$ and that A and each move bound $A_{C}, C \in \mathcal{C}$, are axis-parallel rectangles with integral coordinates.
Describe an algorithm with running time polynomial in $|\mathcal{C}|$ that decides whether there exists a feasible placement such that all move bound constraints are met.

Exercise 5.5:

Show that the following decision problem is NP-complete:
Instance: $k \in \mathbb{N}$ and an instance of the Standard Placement Problem without blockages where all circuits have unit width and unit height and all net weights are equal to 1 .

Question: Is there a feasible solution with bounding box net length at most k ?
(4 points)

Deadline: Thursday, June 6th, before the lecture.

