Exercise Set 7

Exercise 7.1:

Recall the LP for the d-dimensional arrangement problem from the lecture for $d=2$:

$$
\begin{array}{rlrl}
\min & \sum_{e \in E(G)} w(e) l(e) & & \\
\text { s.t. } & \sum_{y \in X} l(\{x, y\}) & \geq \frac{1}{4}(|X|-1)^{1+1 / 2} & \forall X \subseteq V(G), \forall x \in X \\
l(\{x, y\})+l(\{y, z\}) & \geq l(\{x, z\}) & \forall x, y, z \in V(G) \\
l(\{x, y\}) & \geq 0 & \forall x, y \in V(G) \\
l(\{x, x\}) & =0 & \forall x \in V(G) \\
l(e) & \geq 1 & \forall e \in E(G)
\end{array}
$$

Let L be the optimal value of this LP. Show that there is no feasible solution of the given instance of the 2-dimensional arrangement problem with cost less than L.
(4 points)

Exercise 7.2:

Let $G=(V, E)$ be an undirected graph with edge weights $w: E(G) \rightarrow \mathbb{R}_{\geq 0}$. Let $\mathcal{C} \subset V(G)$ and $x: V(G) \backslash \mathcal{C} \rightarrow\{1, \ldots, k\}$ be a placement function, where $k \in \mathbb{N}$. We are looking for positions $x: \mathcal{C} \rightarrow\{1, \ldots, k\}$ such that

$$
\sum_{e=\{v, w\} \in E(G)} w(e) \cdot|x(v)-x(w)|
$$

is minimum. It is allowed to place several vertices at the same position.
Prove that this problem can be solved optimally by solving $k-1$ minimum weight s - t cut problems in digraphs with $\mathcal{O}(|V(G)|)$ vertices and $\mathcal{O}(|E(G)|)$ edges.

Hint: Consider the digraphs G_{j} defined by $V\left(G_{j}\right)=\{s, t\} \cup \mathcal{C}$ and

$$
\begin{aligned}
E\left(G_{j}\right)= & \{\{s, v\}: \exists w \in V(G) \backslash \mathcal{C}, x(w) \leq j,\{v, w\} \in E(G)\} \cup \\
& \{\{v, w\}: v, w \in \mathcal{C},\{v, w\} \in E(G)\} \cup \\
& \{\{v, t\}: \exists w \in V(G) \backslash \mathcal{C}, x(w)>j,\{v, w\} \in E(G)\}
\end{aligned}
$$

Definition:

Let $G=(V, E)$ be an undirected graph.
A $\frac{3}{4}$-balanced hierarchical decomposition P of G is a sequence $P_{0}, P_{1}, \ldots, P_{m}$ such that

- $P_{0}=\{V(G)\}$
- P_{i+1} is a refinement of P_{i} for each $i=0,1, \ldots, m-1$
- $P_{m}=\{\{v\}: v \in V(G)\}$
- $|W| \leq\left(\frac{3}{4}\right)^{i} \cdot|V(G)|$ for all $W \in P_{i}$

For an edge edge $e=\{v, w\} \in E(G)$ we denote by $l(e)$ the index i such that v and w belong to the same set in P_{i} but not in P_{i+1}.

Example of a $\frac{3}{4}$-balanced hierarchical decomposition. Sets in the i th row belong to P_{i-1}. In the picture, $l\left(\left\{v_{1}, v_{2}\right\}\right)=1$ and $l\left(\left\{v_{3}, v_{4}\right\}\right)=2$.

Exercise 7.3:

Consider the following two problems, where $d \in \mathbb{N}$ is a constant:
Input: An undirected graph $G=(V, E)$.
Output of the min. cost $\frac{3}{4}$-balanced hier. dec. problem:
A $\frac{3}{4}$-balanced hier. dec. of G minimizing $\sum_{e \in E(G)} \sqrt[d]{\left(\frac{3}{4}\right)^{l(e)} \cdot|V(G)|}$.
Output of the min. cost linear arr. problem with d-dim. costs:
A linear arrangement p of G minimizing $\sum_{e=\{v, w\} \in E(G)} \sqrt[d]{|p(v)-p(w)|}$.
Prove that an approximation algorithm with approximation ratio α for the minimum cost $\frac{3}{4}$-balanced hierarchical decomposition problem yields an approximation algorithm with approximation ratio $\mathcal{O}(\alpha)$ for the minimum cost linear arrangement problem with d-dimensional costs.

Deadline: Thursday, June 20th, before the lecture.

