Research Institute for Discrete Mathematics Chip Design Summer term 2013

Prof. Dr. S. Hougardy D. Rotter, M. Sc.

Exercise Set 7

Exercise 7.1:

Recall the LP for the *d*-dimensional arrangement problem from the lecture for d = 2:

mir

Let L be the optimal value of this LP. Show that there is no feasible solution of the given instance of the 2-dimensional arrangement problem with cost less than L. (4 points)

Exercise 7.2:

Let G = (V, E) be an undirected graph with edge weights $w : E(G) \to \mathbb{R}_{>0}$. Let $\mathcal{C} \subset V(G)$ and $x: V(G) \setminus \mathcal{C} \to \{1, \ldots, k\}$ be a placement function, where $k \in \mathbb{N}$. We are looking for positions $x : \mathcal{C} \to \{1, \ldots, k\}$ such that

$$\sum_{e=\{v,w\}\in E(G)} w(e) \cdot |x(v) - x(w)|$$

is minimum. It is allowed to place several vertices at the same position.

Prove that this problem can be solved optimally by solving k-1 minimum weight s-t cut problems in digraphs with $\mathcal{O}(|V(G)|)$ vertices and $\mathcal{O}(|E(G)|)$ edges.

Hint: Consider the digraphs G_j defined by $V(G_j) = \{s, t\} \cup \mathcal{C}$ and

$$\begin{split} E(G_j) =& \{\{s,v\} : \exists \ w \in V(G) \backslash \mathcal{C}, x(w) \leq j, \{v,w\} \in E(G)\} \cup \\ & \{\{v,w\} : v,w \in \mathcal{C}, \{v,w\} \in E(G)\} \cup \\ & \{\{v,t\} : \exists \ w \in V(G) \backslash \mathcal{C}, x(w) > j, \{v,w\} \in E(G)\} \end{split}$$

(6 points)

Definition:

Let G = (V, E) be an undirected graph. A $\frac{3}{4}$ -balanced hierarchical decomposition Pof G is a sequence P_0, P_1, \ldots, P_m such that

• $P_0 = \{V(G)\}$

- P_{i+1} is a refinement of P_i for each $i = 0, 1, \dots, m-1$
- $P_m = \{\{v\} : v \in V(G)\}$
- $|W| \le \left(\frac{3}{4}\right)^i \cdot |V(G)|$ for all $W \in P_i$

For an edge edge $e = \{v, w\} \in E(G)$ we denote by l(e) the index *i* such that *v* and *w* belong to the same set in P_i but not in P_{i+1} .

Example of a $\frac{3}{4}$ -balanced hierarchical decomposition. Sets in the *i*th row belong to P_{i-1} . In the picture, $l(\{v_1, v_2\}) = 1$ and $l(\{v_3, v_4\}) = 2$.

Exercise 7.3:

Consider the following two problems, where $d \in \mathbb{N}$ is a constant:

Input: An undirected graph G = (V, E). Output of the min. cost $\frac{3}{4}$ -balanced hier. dec. problem: A $\frac{3}{4}$ -balanced hier. dec. of G minimizing $\sum_{e \in E(G)} \sqrt[d]{(\frac{3}{4})^{l(e)} \cdot |V(G)|}$. Output of the min. cost linear arr. problem with d-dim. costs: A linear arrangement p of G minimizing $\sum_{e=\{v,w\}\in E(G)} \sqrt[d]{|p(v) - p(w)|}$.

Prove that an approximation algorithm with approximation ratio α for the *mini*mum cost $\frac{3}{4}$ -balanced hierarchical decomposition problem yields an approximation algorithm with approximation ratio $\mathcal{O}(\alpha)$ for the *minimum cost linear arrangement* problem with d-dimensional costs.

(6 points)

Deadline: Thursday, June 20th, before the lecture.