Exercise Set 9

Exercise 9.1:

Formulate the Simple Global Routing Problem as an integer linear program with a polynomial number of variables and constraints.

Exercise 9.2:

Given an instance of the Simple Global Routing Problem and additionally a set \mathcal{P} of timing-critical paths with delay bounds $D: \mathcal{P} \rightarrow \mathbb{R}_{+}$. Each path $P \in \mathcal{P}$ consists of a sequence $N_{1}, N_{2}, \ldots, N_{n}$ of nets. Let \mathcal{Y}_{N} be the set of Steiner trees for $N \in \mathcal{N}$. A delay function $d_{N}: \mathcal{Y}_{N} \rightarrow \mathbb{R}$ specifies the delay through the circuit driving N. The delay depends on the length of the Steiner tree $Y_{N} \in \mathcal{Y}_{N}$ and the additional spacing $s_{N}(e)$:

$$
d_{N}\left(Y_{N}\right):=\alpha_{N}+\beta_{N} \cdot \sum_{e \in E\left(Y_{N}\right)} l(e)\left(w(N, e)+\frac{\zeta_{N, e}}{s_{N}(e)}\right)
$$

with constants $\alpha_{N}, \beta_{N}, \zeta_{N, e}$.
We require that

$$
\sum_{N \in P} d_{N}\left(Y_{N}\right) \leq D(P) \text { for all } P \in \mathcal{P}
$$

Show that the fractional relaxation of the Simple Global Routing Problem with these additional spacing variables and delay constraints can be modeled as a Min-Max Resource Sharing Problem.

Exercise 9.3:

Let G be an acyclic, directed graph and let $s_{1}, s_{2}, t_{1}, t_{2} \in V(G)$ be pairwise distinct vertices. We want to compute a $s_{1}-t_{1}$ path P_{1} and a $s_{2}-t_{2}$ path P_{2} in G such that P_{1} and P_{2} are vertex (resp. edge) disjoint or decide that such paths do not exist. Show:
(a) The vertex disjoint and the edge disjoint version are polynomially equivalent.
(b) The vertex disjoint version can be solved in $\mathcal{O}(|V(G)| \cdot|E(G)|)$ time.

Deadline: Thursday, July 4th, before the lecture.

