Exercise Set 2

Exercise 2.1:

Prove that the following problem is $N P$-complete for every constant $\alpha \geq 1$:

Input: A set $\left\{\left[0, w_{i}\right] \times\left[0, h_{i}\right]: i=1, \ldots, n\right\}$ of rectangular circuits and a rectangular chip area $[0, w] \times[0, h]$ such that $\alpha \cdot \sum_{i=1}^{n} w_{i} h_{i} \leq w h$.
Task: Decide whether there exists a feasible placement.

Exercise 2.2:

Given a set $\left\{\left[x_{i_{1}}, x_{i_{2}}\right] \times\left[y_{i_{1}}, y_{i_{2}}\right]: i=1, \ldots, n\right\}$ of axis-parallel line segments (i.e. $x_{i_{1}}=x_{i_{2}}$ or $y_{i_{1}}=y_{i_{2}}$ for all $i=1, \ldots, n$), give an algorithm that computes all pairs of intersecting line segments in $\mathcal{O}(n \log (n)+k)$ time, where k is the number of intersecting pairs.

Exercise 2.3:

Consider the Steiner Tree Problem in Graphs:

Input: A connected undirected graph $G=(V, E)$, weights $c: E \rightarrow \mathbb{R}_{\geq 0}$ and a set $T \subseteq V$.
Task: Find a minimum weight Steiner tree for T in G.

Give a $2\left(1-\frac{1}{|T|}\right)$ approximation algorithm for the above problem with running time $\mathcal{O}(n \cdot(n \log n+m))$ for $n:=|V|$ and $m:=|E|$.

Exercise 2.4:

For a finite non-empty set $T \subseteq \mathbb{R}^{2}$ we define

$$
\begin{aligned}
& B B(T):=\max _{(x, y) \in T} x-\min _{(x, y) \in T} x+\max _{(x, y) \in T} y-\min _{(x, y) \in T} y \\
& \operatorname{smt}(T):=\text { length of a shortest rectilinear Steiner tree for } T
\end{aligned}
$$

Prove:
a) $\operatorname{smt}(T) \leq \frac{3}{2} B B(T)$ for all $T \subseteq \mathbb{R}^{2}$ with $|T| \leq 5$.
b) There exists no $k \in \mathbb{N}$ with $\operatorname{smt}(T) \leq k \cdot B B(T)$ for all finite $T \subseteq \mathbb{R}^{2}$.

$$
\text { (} 3+2 \text { points) }
$$

Deadline: Thursday, April 24, before the lecture.
The websites for lecture and exercises are linked at

> http://www.or.uni-bonn.de/lectures/ss14/ss14.html

In case of any questions feel free to contact me at scheifele@or.uni-bonn.de .

