Research Institute for Discrete Mathematics Chip Design Summer Term 2014

Prof. Dr. S. Hougardy R. Scheifele, M. Sc.

Exercise Set 2

Exercise 2.1:

Prove that the following problem is NP-complete for every constant $\alpha \geq 1$:

Input: A set {[0, w_i] × [0, h_i] : i = 1, ..., n} of rectangular circuits and a rectangular chip area [0, w] × [0, h] such that α · ∑ⁿ_{i=1} w_ih_i ≤ wh.
Task: Decide whether there exists a feasible placement.

(4 points)

Exercise 2.2:

Given a set $\{[x_{i_1}, x_{i_2}] \times [y_{i_1}, y_{i_2}] : i = 1, ..., n\}$ of axis-parallel line segments (i.e. $x_{i_1} = x_{i_2}$ or $y_{i_1} = y_{i_2}$ for all i = 1, ..., n), give an algorithm that computes all pairs of intersecting line segments in $\mathcal{O}(n \log(n) + k)$ time, where k is the number of intersecting pairs.

(4 points)

Exercise 2.3:

Consider the Steiner Tree Problem in Graphs:

Input: A connected undirected graph G = (V, E), weights $c : E \to \mathbb{R}_{\geq 0}$ and a set $T \subset V$.

Task: Find a minimum weight Steiner tree for T in G.

Give a $2\left(1 - \frac{1}{|T|}\right)$ approximation algorithm for the above problem with running time $\mathcal{O}(n \cdot (n \log n + m))$ for n := |V| and m := |E|.

(3 points)

Exercise 2.4:

For a finite non-empty set $T \subseteq \mathbb{R}^2$ we define

 $BB(T) := \max_{(x,y)\in T} x - \min_{(x,y)\in T} x + \max_{(x,y)\in T} y - \min_{(x,y)\in T} y$

smt(T) := length of a shortest rectilinear Steiner tree for T

Prove:

- a) $smt(T) \leq \frac{3}{2}BB(T)$ for all $T \subseteq \mathbb{R}^2$ with $|T| \leq 5$.
- b) There exists no $k \in \mathbb{N}$ with $smt(T) \leq k \cdot BB(T)$ for all finite $T \subseteq \mathbb{R}^2$.

(3 + 2 points)

Deadline: Thursday, April 24, before the lecture. The websites for lecture and exercises are linked at

http://www.or.uni-bonn.de/lectures/ss14/ss14.html

In case of any questions feel free to contact me at scheifele@or.uni-bonn.de .