Research Institute for Discrete Mathematics Chip Design Summer Term 2014

Prof. Dr. S. Hougardy R. Scheifele, M. Sc.

Exercise Set 5

Exercise 5.1:

Given a connected undirected graph G = (V, E), a set $T \subseteq V$ with |T| = 3 and a cost function $c : E \to \mathbb{R}_{\geq 0}$, show how to compute a shortest Steiner tree for T in G in $\mathcal{O}(|V| \log |V| + |E|)$ time.

(4 points)

Exercise 5.2:

Let $T \subseteq \mathbb{R}^2$ be a finite set of terminals located on k parallel horizontal lines (i.e. $|\{y(t) : t \in T\}| = k$). We assume that the elements of T are sorted by their x-coordinate in non-decreasing order. Prove:

- (a) If k = 2, a shortest rectilinear Steiner tree for T can be found in linear time.
- (b) If k is constant and on each of the k parallel lines there is a terminal with x-coordinate $\min\{x(t) : t \in T\}$, a shortest rectilinear Steiner tree for T can be found in linear time.

(4 + 2 points)

Exercise 5.3:

Let Y be a Steiner tree for terminal set T in which all leaves are terminals. Prove that $\sum_{t \in T} (|\delta_Y(t)| - 1) = k - 1$, where k is the number of full components of Y.

(2 points)

Exercise 5.4:

Given a finite set $T \subseteq \mathbb{R}^2$, show how

a)
$$\operatorname{CLIQUE}(T) := \frac{1}{|T| - 1} \sum_{(x,y), (x',y') \in T} \left(|x - x'| + |y - y'| \right)$$

b)
$$\operatorname{Star}(T) := \min_{(x',y') \in \mathbb{R}^2} \sum_{(x,y) \in T} \left(|x - x'| + |y - y'| \right)$$

can be computed in $\mathcal{O}(|T| \log |T|)$ time.

(2+2 points)

Deadline: Thursday, May 15, before the lecture.

The websites for lecture and exercises are linked at

http://www.or.uni-bonn.de/lectures/ss14/ss14.html

In case of any questions feel free to contact me at scheifele@or.uni-bonn.de .