Exercise Set 5

Exercise 5.1:

Given a connected undirected graph $G=(V, E)$, a set $T \subseteq V$ with $|T|=3$ and a cost function $c: E \rightarrow \mathbb{R}_{\geq 0}$, show how to compute a shortest Steiner tree for T in G in $\mathcal{O}(|V| \log |V|+|E|)$ time.

Exercise 5.2:

Let $T \subseteq \mathbb{R}^{2}$ be a finite set of terminals located on k parallel horizontal lines (i.e. $|\{y(t): t \in T\}|=k)$. We assume that the elements of T are sorted by their x-coordinate in non-decreasing order. Prove:
(a) If $k=2$, a shortest rectilinear Steiner tree for T can be found in linear time.
(b) If k is constant and on each of the k parallel lines there is a terminal with x-coordinate $\min \{x(t): t \in T\}$, a shortest rectilinear Steiner tree for T can be found in linear time.

$$
\text { (} 4+2 \text { points })
$$

Exercise 5.3:

Let Y be a Steiner tree for terminal set T in which all leaves are terminals. Prove that $\sum_{t \in T}\left(\left|\delta_{Y}(t)\right|-1\right)=k-1$, where k is the number of full components of Y.

Exercise 5.4:

Given a finite set $T \subseteq \mathbb{R}^{2}$, show how
a) $\operatorname{CliQue}(T):=\frac{1}{|T|-1} \sum_{(x, y),\left(x^{\prime}, y^{\prime}\right) \in T}\left(\left|x-x^{\prime}\right|+\left|y-y^{\prime}\right|\right)$
b) $\operatorname{STAR}(T):=\min _{\left(x^{\prime}, y^{\prime}\right) \in \mathbb{R}^{2}} \sum_{(x, y) \in T}\left(\left|x-x^{\prime}\right|+\left|y-y^{\prime}\right|\right)$
can be computed in $\mathcal{O}(|T| \log |T|)$ time.

Deadline: Thursday, May 15, before the lecture.
The websites for lecture and exercises are linked at

In case of any questions feel free to contact me at scheifele@or.uni-bonn.de .

