Research Institute for Discrete Mathematics Chip Design Summer Term 2014

Prof. Dr. S. Hougardy R. Scheifele, M. Sc.

Exercise Set 8

Exercise 8.1:

Given rectangles C_1, \ldots, C_n with widths w_1, \ldots, w_n and heights h_1, \ldots, h_n , formulate an integer linear program that checks whether they can be packed (without overlaps) within a rectangle $[x_{\min}, x_{\max}] \times [y_{\min}, y_{\max}]$ allowing rotations by multiples of 90°.

(4 points)

Exercise 8.2:

Prove that the STANDARD PLACEMENT PROBLEM can be solved optimally in

$$\mathcal{O}\Big(\Big((n+s)!/s!\Big)^2(n+k)(m+n^2+k\log k)\log(n+k)\Big)$$

time, where $n = |\mathcal{C}|, s = |\mathcal{S}|, k = |\mathcal{N}|$ and m = |P|. Here, \mathcal{C} denotes the set of circuits, \mathcal{S} the set of blockages, \mathcal{N} the set of nets and P the set of pins.

(6 points)

Exercise 8.3:

The GRIDDED PLACEMENT PROBLEM is an extension of the STANDARD PLACEMENT PROBLEM with a grid $\Gamma = \Gamma_x \times \Gamma_y$, $\Gamma_x := \{k \cdot \delta_x : k \in \mathbb{Z}\}$ and $\Gamma_y := \{k \cdot \delta_y : k \in \mathbb{Z}\}$ for some $\delta_x, \delta_y \in \mathbb{Z}$, where the lower left corner of each circuit is required to be located on one of the grid points. Prove: The GRIDDED PLACEMENT PROBLEM is *NP*-hard even if an optimum solution of the associated ungridded placement problem is known.

(6 points)

Deadline: Thursday, June 5, before the lecture. The websites for lecture and exercises are linked at

http://www.or.uni-bonn.de/lectures/ss14/ss14.html

In case of any questions feel free to contact me at scheifele@or.uni-bonn.de .