Exercise Set 8

Exercise 8.1:

Given rectangles C_{1}, \ldots, C_{n} with widths w_{1}, \ldots, w_{n} and heights h_{1}, \ldots, h_{n}, formulate an integer linear program that checks whether they can be packed (without overlaps) within a rectangle $\left[x_{\min }, x_{\max }\right] \times\left[y_{\min }, y_{\max }\right]$ allowing rotations by multiples of 90°.

Exercise 8.2:

Prove that the Standard Placement Problem can be solved optimally in

$$
\mathcal{O}\left(((n+s)!/ s!)^{2}(n+k)\left(m+n^{2}+k \log k\right) \log (n+k)\right)
$$

time, where $n=|\mathcal{C}|, s=|\mathcal{S}|, k=|\mathcal{N}|$ and $m=|P|$. Here, \mathcal{C} denotes the set of circuits, \mathcal{S} the set of blockages, \mathcal{N} the set of nets and P the set of pins.

Exercise 8.3:

The Gridded Placement Problem is an extension of the Standard Placement Problem with a grid $\Gamma=\Gamma_{x} \times \Gamma_{y}, \Gamma_{x}:=\left\{k \cdot \delta_{x}: k \in \mathbb{Z}\right\}$ and $\Gamma_{y}:=\left\{k \cdot \delta_{y}: k \in \mathbb{Z}\right\}$ for some $\delta_{x}, \delta_{y} \in \mathbb{Z}$, where the lower left corner of each circuit is required to be located on one of the grid points. Prove: The Gridded Placement Problem is $N P$-hard even if an optimum solution of the associated ungridded placement problem is known.

Deadline: Thursday, June 5, before the lecture.
The websites for lecture and exercises are linked at
http://www.or.uni-bonn.de/lectures/ss14/ss14.html

In case of any questions feel free to contact me at scheifele@or.uni-bonn.de .

