Exercise Set 10

Exercise 10.1:

Prove: For $d=2$, the optimum objective function value of the spreading LP is a lower bound for the optimum objective function value of the corresponding instance of the 2-Dimensional Arrangement Problem.

Exercise 10.2:

Consider the special case of the Quadratic Assignment Problem where $|U|=|V(G)|$, $w(e)=1$ for all $e \in E(G), d$ is metric, c is zero, and G is a wheel, i.e. for even n we have $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$ and $E(G)=E_{1} \cup E_{2}$ with $E_{1}=\left\{\left\{v_{i}, v_{i+1}\right\}: i=1, \ldots, n\right\}$ and $E_{2}=\left\{\left\{v_{i}, v_{i+\frac{n}{2}}\right\}: i=1, \ldots, \frac{n}{2}\right\}$, where all indices are modulo n. Let f^{*} be the embedding such that $\left\{\left\{f^{*}(x), f^{*}(y)\right\}:\{x, y\} \in E_{1}\right\}$ is a shortest TSP tour on U with respect to d.
a) Show that $\sum_{e=(x, y) \in E(G)} d\left(f^{*}(x), f^{*}(y)\right)=\Omega(n \cdot O P T)$, where $O P T$ denotes the optimum objective function value of the given instance of the QUADRATIC AsSIGNMENT Problem.
b) Give a polynomial time 3-approximation algorithm for the above special case of the Quadratic Assignment Problem.

$$
\text { (4 + } 4 \text { points })
$$

Exercise 10.3:

Let $G=(V, E)$ be a simple undirected graph with $V=\{1, \ldots, n\}$. The Laplacian matrix L_{G} of G is the $n \times n$-matrix whose entries $l_{i, j}, 1 \leq i, j \leq n$, are given by

$$
l_{i, j}=\left\{\begin{array}{cc}
-1 & \text { if }\{i, j\} \in E \\
|\delta(i)| & \text { if } i=j, \text { and } \\
0 & \text { otherwise }
\end{array}\right.
$$

(a) Prove that L_{G} is positive semidefinite, that is, $x^{T} L_{G} x \geq 0$ for all $x \in \mathbb{R}^{n}$.
(b) Let G be connected and let $\lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{n}$ be the eigenvalues of L_{G}. Show that $\lambda_{1}=0$ and $\lambda_{2}>0$.
(c) Show that the multiplicity of 0 as an eigenvalue of L_{G} equals the number of connected components of G.

$$
(1+1+2 \text { points })
$$

Deadline: Thursday, June 26, before the lecture.
The websites for lecture and exercises are linked at
http://www.or.uni-bonn.de/lectures/ss14/ss14.html

In case of any questions feel free to contact me at scheifele@or.uni-bonn.de .

Note that this will be the last exercise sheet (except for programming exercises) that will be relevant for admittance to the exam.

