Exercise Set 5

Exercise 5.1. Let $T \subset \mathbb{R}^2$ be a finite set of terminals, and $S_1, \ldots, S_m \subseteq \mathbb{R}^2$ be rectangular, axis-parallel blockages. Let $S := \bigcup_i S_i$, \mathring{S} denote the interior of S, and let $0 < L \in \mathbb{R}$ be a constant.

A rectilinear Steiner tree Y for T is *reach-aware* if every connected component of $E(Y) \cap \mathring{S}$ has length at most L.

(a) We define the Hanan grid induced by (T, S_1, \ldots, S_m) as the usual Hanan grid for $T \cup \{l_i, u_i \mid 1 \leq i \leq m\}$ where l_i (resp. u_i) is the lower left (resp. upper right) corner of S_i .

Prove or disprove: There is always a shortest reach-aware Steiner tree for T that is a subgraph of the Hanan grid induced by (T, S_1, \ldots, S_m) .

(b) Prove that it is \mathcal{NP} -hard to compute a reach-aware Steiner tree for T that has at most twice the length of an optimum solution.

Hint: If there are no terminals on blockages this is not \mathcal{NP} -hard.

(2+2 points)

Exercise 5.2. Consider the following problem:

RSMT with Weighted Sum of Elmore Delays

Input: A finite set $T \subset \mathbb{R}^2$, a root $r \in T$; source resistance R_0 , resistance R_u and capacitance C_u per wire unit; weights $w_i > 0$ and downstream capacitance downcap (t_i) for each $t_i \in T \setminus \{r\}$.

Task: Construct a rectilinear Steiner tree Y for T that minimizes $\sum_{t_i \in T \setminus \{r\}} w_i \text{ELMORE}(r, t_i).$

For a Steiner tree Y for T and $t_i \in T \setminus \{r\}$ we define $ELMORE(r, t_i)$ as

$$ELMORE(r, t_i) := R_0 \operatorname{downcap}(r) + \sum_{e=(u,v)\in Y[r,t_i]} \operatorname{res}(e) \left(\frac{\operatorname{cap}(e)}{2} + \operatorname{downcap}(v)\right)$$

where $Y[r, t_i]$ denotes the $r - t_i$ -path in Y and $\operatorname{cap}(e) := C_u \ell_1(u, v)$ and $\operatorname{res}(e) := R_u \ell_1(u, v)$. For $v \in V(Y) \setminus (T \setminus \{r\})$ we define

$$\operatorname{downcap}(v) := \sum_{e=(v,w)\in \delta_Y^+(v)} (\operatorname{cap}(e) + \operatorname{downcap}(w))$$

- (a) Prove that the Hanan grid for T contains an optimum solution to RSMT with Weighted Sum of Elmore Delays.
- (b) Show that this does not hold if, instead of the weighted sum, we minimize $\max_{t_i \in T \setminus \{r\}} \text{ELMORE}(r, t_i)$.

(4+4 points)

Exercise 5.3. Consider the following CLUSTERED RECTILINEAR STEINER TREE PROBLEM: Given a partition $T = \bigcup_{i=1}^{k} P_i$ of the terminals ($\emptyset \neq P_i \subseteq \mathbb{R}^2$, $|P_i| < \infty$), find a (rectilinear) Steiner tree Y_i for each set of terminals P_i and one rectilinear, toplevel (group) Steiner tree Y_{top} connecting the embedded trees Y_i ($i = 1, \ldots, k$). The task is to minimize the total length of all trees.

Let A be an α -approximation algorithm for the RECTILINEAR STEINER TREE PROBLEM. A feasible solution to the CLUSTERED RECTILINEAR STEINER TREE PROBLEM can be found by first selecting a connection point $q_i \in \mathbb{R}^2$ for each $i = 1, \ldots, k$ and then computing $Y_i := A(P_i \cup \{q_i\})$ and $Y_{\text{top}} := A(\{q_i : 1 \leq i \leq n\}).$

- (a) Show that picking $q_i \in P_i$ arbitrarily yields a 2α approximation.
- (b) Prove that choosing each q_i as the center of the bounding box of P_i implies a $\frac{7}{4}\alpha$ approximation algorithm.
- (c) Show that both approximation ratios above are tight.

(2 + 4 + 2 points)

Deadline: May 29th, before the lecture. The websites for lecture and exercises can be found at:

```
http://www.or.uni-bonn.de/lectures/ss18/chipss18.html
```

In case of any questions feel free to contact me at bihler@or.uni-bonn.de.