Exercises 10

Exercise 1:

Compute (sharp) lower bounds for the rank quotients of the following independence systems (E, \mathcal{F}) :

- (a) E = V(G) and \mathcal{F} stable sets in G.
- (b) E = E(G) and \mathcal{F} are subsets of a Hamiltonian circle in G.
- (c) E = E(G) and \mathcal{F} are subsets of an s t-path with $s, t \in V(G)$ and t reachable from s.
- (d) $E = \{1, \ldots, n\}$ and non-negative weights w_j , $j = 1, \ldots, n$ and $k \in \mathbb{R}_+$. \mathcal{F} are subsets of total weight $\leq k$.
- (e) E = E(G), \mathcal{F} are subsets of Steiner trees in G.
- (f) E = E(G), \mathcal{F} are subsets of branchings in G.
- (g) E = E(G), \mathcal{F} contains matchings in G.

(6 points)

Exercise 2:

Show that the following decision problem is \mathcal{NP} -complete: Given three matroids $(E, \mathcal{F}_1), (E, \mathcal{F}_2), (E, \mathcal{F}_3)$ (by some oracle) and a $k \in \mathbb{N}$. Exists an F in $\mathcal{F}_1 \cap \mathcal{F}_2 \cap \mathcal{F}_3$ such that $|F| \geq k$?

(3 points)

Exercise 3:

Let \mathcal{M} be a graphic matroid. Prove that there exists a connected graph G such that

$$\mathcal{M}\cong\mathcal{M}(G)$$

(4 points)

Exercise 4:

Let G be an undirected graph, $k \in \mathbb{N}$ and let $\mathcal{F} := \{F \subseteq E(G) | F \text{ is union of } k \text{ forests } \}$. Prove: $(E(G), \mathcal{F})$ is a matroid.

(3 points)

Deadline: Tuesday, December 21st, before the lecture.