Exercises 2

Exercise 1:

Let $\alpha(G)$ denote the size of a maximum stable set in a graph G, and $\zeta(G)$ the minimum cardinality of an edge cover.
(An edge cover in G is a set $F \subseteq E(G)$ of edges such that every vertex of G is incident to at least one edge in F.)
Prove:
(a) $\alpha(G)+\tau(G)=|V(G)| \quad$ for any graph G.
(b) $\nu(G)+\zeta(G)=|V(G)| \quad$ for any graph G with no isolated vertices.
(c) $\zeta(G)=\alpha(G) \quad$ for any bipartite graph G with no isolated vertices.

$$
(1+2+1 \text { points })
$$

Exercise 2:

(a) Let $S=\{1,2, \ldots, n\}$ and $0 \leq k<\frac{n}{2}$. Let A and B be the collection of all k-element and $(k+1)$-element subsets of S, respectively. Construct a bipartite graph

$$
G=(A \dot{\cup} B,\{\{a, b\}: a \in A, b \in B, a \subseteq b\})
$$

Prove that G has a matching covering A.
(b) Prove Sperner's Lemma: the maximum number of subsets of an n-element set such that none is contained in any other is $\binom{n}{\left\lfloor\frac{n}{2}\right\rfloor}$.

$$
(2+2 \text { points })
$$

Exercise 3:

Let G be a bipartite graph with bipartition $V(G)=A \dot{\cup} B$. Suppose that $S \subseteq A$, $T \subseteq B$, and there is a matching covering S and a matching covering T. Prove that then there is a matching covering $S \cup T$.

Exercise 4:

Prove that every 3-regular simple graph with at most two bridges has a perfect matching. Is there a 3 -regular simple graph without a perfect matching?
Hint: Use Tutte's Theorem 10.13.

Deadline: Tuesday, October 26th, before the lecture.

