Exercises 3

Exercise 1:

Let G be a bipartite graph with bipartition $V(G)=A \dot{\cup} B, A=\left\{a_{1}, \ldots, a_{k}\right\}, B=$ $\left\{b_{1}, \ldots, b_{k}\right\}$. For any vector $x=\left(x_{e}\right)_{e \in E(G)}$ we define a matrix $M_{G}(x)=\left(m_{i j}^{x}\right)_{1 \leq i, j \leq k}$ by

$$
m_{i j}^{x}:= \begin{cases}x_{e} & \text { if } e=\left\{a_{i}, b_{j}\right\} \in E(G) \\ 0 & \text { otherwise }\end{cases}
$$

Its determinant $\operatorname{det} M_{G}(x)$ is a polynomial in $x=\left(x_{e}\right)_{e \in E(G)}$. Prove that G has a perfect matching if and only if $\operatorname{det} M_{G}(x)$ is not identically zero.
(4 points)

Exercise 2:

Let G be a graph and M a matching in G that is not maximum.
(a) Show that there are $\nu(G)-|M|$ vertex-disjoint M-augmenting paths in G. Hint: Recall the proof of Berge's Theorem (Thm. 6).
(b) Prove that there exists an M-augmenting path of length at most $\frac{\nu(G)+|M|}{\nu(G)-|M|}$.
(c) Let P be a shortest M-augmenting path in G, and P^{\prime} an $(M \triangle E(P))$-augmenting path. Then $\left|E\left(P^{\prime}\right)\right| \geq|E(P)|+\left|E\left(P \cap P^{\prime}\right)\right|$.
Consider the following generic algorithm. We start with the empty matching and in each iteration augment the matching along a shortest augmenting path. Let P_{1}, P_{2}, \ldots be the sequence of augmenting paths chosen. By (c), $\left|E\left(P_{k}\right)\right| \leq\left|E\left(P_{k+1}\right)\right|$ for all k.
(d) Show that if $\left|E\left(P_{i}\right)\right|=\left|E\left(P_{j}\right)\right|$ for $i \neq j$ then P_{i} and P_{j} are vertex-disjoint.
(e) Conclude that the sequence $\left|E\left(P_{1}\right)\right|,\left|E\left(P_{2}\right)\right|, \ldots$ contains at most
$2 \sqrt{\nu(G)}+2$ different numbers.
(6 points)

Exercise 3:

For a graph G, let $\mathcal{T}(G):=\left\{X \subseteq V(G)\left|q_{g}(X)>|X|\right\}\right.$ the familly of Tutte-sets of G. Prove or find a counterexample: G is factor-critical if and only if $\mathcal{T}(G)=\{\emptyset\}$.

Exercise 4: Prove:

1. An undirected graph G is 2-edge-connected if and only if $|E(G)| \geq 2$ and G has an ear-decomposition.
2. A directed graph is strongly connected if and only if it has an ear-decomposition.

Deadline: Tuesday, November 2nd, before the lecture.

