Combinatorial Optimization
Winter term 2010/2011

Prof. Dr. Stefan Hougardy
Markus Struzyna

Exercises 4

Exercise 1:

Show that any simple graph with n vertices with minimum degree k has a matching of cardinality $\min \left\{k,\left\lfloor\frac{n}{2}\right\rfloor\right\}$.

Exercise 2:

Prove that an undirected graph G is factor-critical if and only if G is connected and $\nu(G)=\nu(G-v)$ for all $v \in V(G)$.

Exercise 3:

Recall the generic algorithm from set 3, excercise 2 .
(a) Prove that - given a matching M - the union of all shortest M-augmenting paths in G can be found in $O(n+m)$ time.
Hint: Use a kind of breadth-first search with matching edges and non-matching edges alternating.
(b) Consider a sequence of iterations of the algorithm where the length of the augmenting path remains constant. Show that the time needed for the whole sequence is no more than $O(n+m)$.
Hint: First apply (a) and then find the paths successively by DFS. Mark vertices already visited.
(c) Combine (b) with Exercise 3.2(e) to obtain an $O(\sqrt{n}(m+n))$-algorithm for the Cardinality Matching Problem in bipartite graphs.

Deadline: Tuesday, November 9th, before the lecture.

