Exercises 5

Exercise 1:

Show: the number of ears in any two odd ear-decompositions of a factor-critical graph G is the same.

Exercise 2:

Prove that a minimal factor-critical graph G has at most $\frac{3}{2}(|V(G)|-1)$ edges and this bound is tight.

Exercise 3:

Let G be a graph, M a maximum matching in G and F as well as F^{\prime} two special blossom forests w.r.t M, each with the maximum possible number of edges. Show that the set of inner vertices in F and F^{\prime} is the same.

Exercise 4:

Let G be a k-connected graph with $2 \nu(G)<|V(G)|-1$. Prove:
a. $\nu(G) \geq k$,
b. $\tau(G) \leq 2 \nu(G)-k$.
(Use the Gallai-Edmonds Theorem)

Deadline: Tuesday, November 16th, before the lecture.

