Combinatorial Optimization
Winter term 2010/2011

Prof. Dr. Stefan Hougardy
Markus Struzyna

Exercises 7

Exercise 1:

Show that a 2-factor approximation for a (cardinality maximal) b-matching in a graph can be found in linear time.

Exercise 2:

Let G be a k-regular and $(k-1)$-edge-connected graph with an even number of vertices, and let $c: E(G) \rightarrow \mathbb{R}_{+}$. Prove that there exists a perfect matching M in G with $c(M) \geq \frac{1}{k} c(E(G))$.
Hint: Show that $\frac{1}{k} \mathbb{1}$ is in the perfect matching polytope, where $\mathbb{1}$ denotes a vector whose components are all one.
(4 points)

Exercise 3:

Show that a minimum weight perfect simple 2-matching in an undirected graph G can be found in $O\left(n^{6}\right)$ time.

Exercise 4:

Let G be a graph, and let

$$
P:=\left\{x \in \mathbb{R}_{+}^{|E(G)|}: \sum_{e \in \delta(v)} x_{e}=1 \quad \text { for all } v \in V(G)\right\}
$$

be the fractional perfect matching polytope of G. Prove that the vertices of P are exactly the vectors x with

$$
x_{e}= \begin{cases}\frac{1}{2} & \text { if } e \in E\left(C_{1}\right) \cup \ldots \cup E\left(C_{k}\right) \\ 1 & \text { if } e \in M \\ 0 & \text { otherwise }\end{cases}
$$

where C_{1}, \ldots, C_{k} are vertex-disjoint odd circuits and M is a perfect matching in $G-\left(V\left(C_{1}\right) \cup \ldots \cup V\left(C_{k}\right)\right)$.

Deadline: Tuesday, November 30th, before the lecture.

