Combinatorial Optimization
Winter term 2010/2011

Prof. Dr. Stefan Hougardy
Markus Struzyna

Exercises 9

Exercise 1:

Describe a polynomial-time algorithm for the following problem:
Given a graph G with weights $c: E(G) \rightarrow \mathbb{R}$ and $S, T \subseteq V(G)$, find a minimum weight set $F \subseteq E(G)$ such that $|\delta(v) \cap F|$ is even for $v \in S$ and odd for $v \in T$, or decide that no such set exists.
(4 points)

Exercise 2:

Let G be an undirected graph and $T \subseteq V(G)$ with $|T|$ even. Prove that the convex hull of the incidence vectors of all T-joins in G is the set of all vectors $x \in[0,1]^{E(G)}$ satisfying

$$
\sum_{e \in \delta_{G}(X) \backslash F} x_{e}+\sum_{e \in F}\left(1-x_{e}\right) \geq 1
$$

for all $X \subseteq V(G)$ and $F \subseteq \delta_{G}(X)$ with $|X \cap T|+|F|$ odd.

Exercise 3:

Let G be an undirected graph, $T \subseteq V(G)$ with $|T|$ even, and $F \subseteq E(G)$. Prove:
(a) F has nonempty intersection with every T-join if and only if F contains a T-cut.
(b) F has nonempty intersection with every T-cut if and only if F contains a T-join.

Deadline: Tuesday, December 14th, before the lecture.

