Wintersemester 2012/13 Prof. Dr. S. Hougardy Dr. U. Brenner

Einführung in die Diskrete Mathematik 13. Übung

- 1. Wir betrachten ein Verfahren, das aus dem Sukzessive-Kürzeste-Wege-Algorithmus entsteht, indem man zwei Änderungen durchführt:
 - Man augmentiert stets um $\gamma' := \min \Big\{ \min_{e \in E(P)} u_f(e), \quad \max\{b'(s), -b'(t)\} \Big\}.$
 - \bullet Der s-t-Weg P wird so ausgewählt, daß der zugehörige $\gamma'\text{-Wert}$ maximal ist.

Zeigen Sie, daß dieser Algorithmus ebenfalls nach höchstens $\frac{1}{2} \sum_{v \in V(G)} |b(v)|$ Augmentierungen terminiert. Zeigen Sie außerdem durch ein Beispiel, daß er mehr Augmentierungen benötigen kann als der (unveränderte) Sukzessive-Kürzeste-Wege-Algorithmus. (4 Punkte)

- 2. Betrachten Sie das folgende Problem: Gegeben sei ein stark zusammenhängender gerichteter Graph G mit nichtnegativen reellen Kantengewichten c. Gesucht ist eine Abbildung $f: E(G) \to \mathbb{N} \setminus \{0\}$, so daß der Graph, der f(e) Kopien von jedem $e \in E(G)$ und V(G) als Knotenmenge enthält, Eulersch ist. Dabei soll $\sum_{e \in E(G)} c(e) f(e)$ minimiert werden. Man gebe einen polynomiellen Algorithmus für dieses Problem an. (4 Punkte)
- 3. Man beschreibe eine Turingmaschine mit Alphabet $\{0, 1, \#\}$, die zwei binäre Strings vergleicht: Der Input bestehe aus einem String a#b mit $a, b \in \{0, 1\}^*$, und der Output sei 1 für a = b und 0 für $a \neq b$. (4 Punkte)
- 4. Zeigen Sie, daß 2SAT, also die Einschränkung des SATISFIABILITY-Problems auf Instanzen, in denen jede Klausel höchstens zwei Literale hat, in polynomieller Zeit lösbar ist. (4 Punkte)

Abgabe: Donnerstag, den 24.1.2013, vor der Vorlesung.