Winter term 2013/14 Prof. Dr. Stefan Hougardy Niko Klewinghaus Research Institute for Discrete Mathematics University of Bonn

Combinatorial Optimization

Exercise Sheet 3

Exercise 3.1:

Prove: A graph G has a perfect matching if and only if for each $X \subseteq V(G)$, the graph G - X has at most |X| factor-critical components.

(4 points)

Exercise 3.2:

Let G be a bipartite graph with edge weights $c : E(G) \to \mathbb{R}$ and let M_k be a matching in G with |M| = k that has minimum weight among all matchings in G that contain exactly k edges. Let p be an augmenting path in G with respect to M_k with minimum weight. Let $M_{k+1} := M \bigtriangleup E(p)$. Prove that $|M_{k+1}| = k + 1$ and M_{k+1} has minimum weight among all matchings in G that contain exactly k + 1 edges.

(4 points)

Exercise 3.3:

Let G be an undirected graph with edge weights $c : E(G) \to \mathbb{R}_{>0}$, and let $v, w \in V$ be two distinct vertices. Describe a polynomial-time algorithm that computes, among all v-w-paths having an even number of edges, a path of minimum weight, and prove its correctness.

Hint: Use that minimum-weight perfect matchings can be computed in polynomial time.

(4 points)

Exercise 3.4:

Show how the following problem can be solved in polynomial time: Given a graph G and edge weights $c : E(G) \to \mathbb{R}_{>0}$, find an edge cover $F \subseteq E(G)$ that minimizes $\sum_{e \in F} c(e)$.

(4 points)

Deadline: Thursday, November 7, 2013, before the lecture.