Winter term 2013/14 Prof. Dr. Stefan Hougardy Niko Klewinghaus

Combinatorial Optimization

Exercise Sheet 5

Exercise 5.1:

Let G be a graph and M a matching in G that is not maximum.

(i) Show that there are $\nu(G) - |M|$ vertex-disjoint *M*-augmenting paths in *G*.

Hint: Recall the proof of Berge's Theorem.

- (ii) Prove that there exists an *M*-augmenting path of length at most $\frac{\nu(G)+|M|}{\nu(G)-|M|}$.
- (iii) Let P be a shortest M-augmenting path in G and P' an $(M \triangle E(P))$ augmenting path. Prove $|E(P')| \ge |E(P)| + 2|E(P \cap P')|$.

Consider the following algorithm: We start with the empty matching and in each iteration augment the matching along a shortest augmenting path. Let P_1, P_2, \ldots be the sequence of augmenting paths chosen.

- (iv) Show that if $|E(P_i)| = |E(P_j)|$ for $i \neq j$, then P_i and P_j are vertexdisjoint.
- (v) Conclude that the sequence $|E(P_1)|, |E(P_2)|, \ldots$ contains at most $2\sqrt{\nu(G)} + 2$ different numbers.

(6 points)

Exercise 5.2:

Let G be a k-regular and (k-1)-edge-connected graph with an even number of vertices. Let $c: E(G) \to \mathbb{R}_+$. Prove that there is a perfect matching M in G with $c(M) \geq \frac{1}{k}c(E(G))$.

Hint: Show that $\frac{1}{k}$ is in the perfect matching polytope where 1 denotes a vector whose components are all 1.

(4 points)

Exercise 5.3:

Let G be a graph and P the fractional perfect matching polytope of G. Prove that the vertices of P are exactly the vectors x with

$$x_e = \begin{cases} \frac{1}{2} & \text{if } e \in E(C_1) \cup \ldots \cup E(C_k) \\ 1 & \text{if } e \in M \\ 0 & \text{otherwise,} \end{cases}$$

where C_1, \ldots, C_k are vertex-disjoint odd cycles and M is a perfect matching in $G - (V(C_1) \cup \ldots \cup V(C_k))$.

(4 points)

Exercise 5.4:

Show that Theorem 41 implies the Berge-Tutte-formula (Theorem 17).

(2 points)

Deadline: Thursday, November 21, 2013, before the lecture.