Combinatorial Optimization

Exercise Sheet 5

Exercise 5.1:

Let G be a graph and M a matching in G that is not maximum.
(i) Show that there are $\nu(G)-|M|$ vertex-disjoint M-augmenting paths in G.
Hint: Recall the proof of Berge's Theorem.
(ii) Prove that there exists an M-augmenting path of length at most $\frac{\nu(G)+|M|}{\nu(G)-|M|}$.
(iii) Let P be a shortest M-augmenting path in G and P^{\prime} an $(M \triangle E(P))$ augmenting path. Prove $\left|E\left(P^{\prime}\right)\right| \geq|E(P)|+2\left|E\left(P \cap P^{\prime}\right)\right|$.

Consider the following algorithm: We start with the empty matching and in each iteration augment the matching along a shortest augmenting path. Let P_{1}, P_{2}, \ldots be the sequence of augmenting paths chosen.
(iv) Show that if $\left|E\left(P_{i}\right)\right|=\left|E\left(P_{j}\right)\right|$ for $i \neq j$, then P_{i} and P_{j} are vertexdisjoint.
(v) Conclude that the sequence $\left|E\left(P_{1}\right)\right|,\left|E\left(P_{2}\right)\right|, \ldots$ contains at most $2 \sqrt{\nu(G)}+$ 2 different numbers.

Exercise 5.2:

Let G be a k-regular and $(k-1)$-edge-connected graph with an even number of vertices. Let $c: E(G) \rightarrow \mathbb{R}_{+}$. Prove that there is a perfect matching M in G with $c(M) \geq \frac{1}{k} c(E(G))$.
Hint: Show that $\frac{1}{k} \mathbb{1}$ is in the perfect matching polytope where $\mathbb{1}$ denotes a vector whose components are all 1 .

Exercise 5.3:

Let G be a graph and P the fractional perfect matching polytope of G. Prove that the vertices of P are exactly the vectors x with

$$
x_{e}= \begin{cases}\frac{1}{2} & \text { if } e \in E\left(C_{1}\right) \cup \ldots \cup E\left(C_{k}\right) \\ 1 & \text { if } e \in M \\ 0 & \text { otherwise }\end{cases}
$$

where C_{1}, \ldots, C_{k} are vertex-disjoint odd cycles and M is a perfect matching in $G-\left(V\left(C_{1}\right) \cup \ldots \cup V\left(C_{k}\right)\right)$.

Exercise 5.4:

Show that Theorem 41 implies the Berge-Tutte-formula (Theorem 17).

Deadline: Thursday, November 21, 2013, before the lecture.

