Combinatorial Optimization

Exercise Sheet 8

Exercise 8.1:

Describe a polynomial time algorithm for the following problem: Given an undirected graph G with weights $c: E(G) \rightarrow \mathbb{R}$ and $S, T \subseteq V(G)$, find a minimum weight set $F \subseteq E(G)$ such that $|\delta(v) \cap F|$ is even for all $v \in S$ and odd for all $v \in T$ or decide that no such set exists.

Exercise 8.2:

Let G be a bipartite graph and $J \subseteq E(G)$. Prove: J satisfies $|J \cap E(C)| \leq$ $\frac{1}{2}|E(C)|$ for each circuit C if and only if there are $|J|$ disjoint cuts each intersecting J in exactly one edge.

Exercise 8.3:

Let G be a simple graph with $|V(G)| \geq 2$ and $|\delta(v)| \geq k$ for all $v \in V(G)$. Prove that there are two vertices s and t such that there exist at least k edge-disjoint s-t-paths in G. Is this still true if there is exactly one vertex v with $|\delta(v)|<k$?

Exercise 8.4:

Let G be an undirected graph and $T \subseteq V(G)$ with $|T|$ even. Prove that the convex hull of the incidence vectors of all T-joins in G is the set of vectors $x \in[0,1]^{E(G)}$ satisfying

$$
\sum_{e \in \delta_{G}(X) \backslash F} x_{e}+\sum_{e \in F}\left(1-x_{e}\right) \geq 1
$$

for all $X \subseteq V(G)$ and $F \subseteq \delta_{G}(X)$ with $|X \cap T|+|F|$ odd. Hint: Use Theorem 56 and Theorem 50.

Deadline: Thursday, December 12, 2013, before the lecture.

