Combinatorial Optimization

Exercise Sheet 9

Exercise 9.1:

Let G be an undirected graph.
(i) Show that the cone generated by (i.e. the set of non-negative linear combinations of) the incidence vectors of all circuits in G, called the circuit cone of G, is determined by

$$
\begin{aligned}
x_{e} \geq 0 & \text { for each } e \in E(G) \\
\sum_{f \in F} x_{f} \geq 2 x_{e} & \text { for each cut } F \subseteq E(G) \text { and } e \in F .
\end{aligned}
$$

(ii) Show that the separation problem for the circuit cone can be solved in polynomial time.

Hint: Use exercise 8.4.

Exercise 9.2:

Find an optimum tour of the metric closure of the following graph G and prove its optimality. Derive that $\frac{4}{3}$ is a lower bound for the integrality ratio of the subtour polytope.

Exercise 9.3:

Let T be an optimum tour for an instance $\left(K_{n}, c\right)$ of the Metric Tsp and let T^{\prime} be a shortest tour different from T. Show that

$$
\frac{c\left(T^{\prime}\right)-c(T)}{c(T)} \leq \frac{2}{n}
$$

Exercise 9.4:

Let G be an undirected graph. A Hamiltonian circuit in G is a circuit in G containing all vertices of G. Prove that $x \in \mathbb{Z}^{E(G)}$ is the incidence vector of a Hamiltonian circuit in G if and only if it satisfies the following constraints:

$$
\begin{align*}
0 \leq x_{e} \leq 1 & (e \in E(G)) \tag{1}\\
\sum_{e \in \delta(v)} x_{e}=2 & (v \in V(G)) \tag{2}\\
\sum_{e \in E(G[X])} x_{e} \leq|X|-1 & (\emptyset \neq X \subset V(G)) \tag{3}\\
\sum_{e \in E(G[Y]) \cup F} x_{e} \leq|Y|+\frac{|F|-1}{2} & (Y \subseteq V(G), F \subseteq \delta(Y),|F| \text { odd }) \tag{4}
\end{align*}
$$

Show that the Separation Problem for these constraints can be solved in polynomial time.
(4 points)

Deadline: Thursday, December 19, 2013, before the lecture.

