Winter term 2013/14Research Institute for Discrete MathematicsProf. Dr. Stefan HougardyUniversity of BonnNiko KlewinghausVite Stefan Hougardy

Combinatorial Optimization

Exercise Sheet 12

Exercise 12.1:

Let G = (V, E) be a graph. We define $\mathcal{F} := \{X \subseteq V \mid X \text{ is covered by some matching}\}$ and $\mathcal{F}^* := \{X \subseteq V \mid X \text{ is exposed by some maximum matching}\}$

- 1. Show that (V, \mathcal{F}) and (V, \mathcal{F}^*) are matroids.
- 2. Show that (V, \mathcal{F}^*) is the dual matroid of (V, \mathcal{F}) .

(2+2 points)

Exercise 12.2:

Let $\mathcal{M}_1, \mathcal{M}_2$ be matroids on E. Let B be a maximal partitionable subset with respect to \mathcal{M}_1 and \mathcal{M}_2^* , and let J_1, J_2 be an associated partitioning. Furthermore, let B_2 be a basis of \mathcal{M}_2^* with $J_2 \subseteq B_2$. Show that $B \setminus B_2$ is a common independent set of \mathcal{M}_1 and \mathcal{M}_2 of maximum cardinality.

(4 points)

Exercise 12.3:

Let G be a connected graph and k an integer. Prove:

- (i) G has two edge-disjoint spanning trees if and only if there does not exist a partition of V into sets V_0, \ldots, V_p such that $|E(V_0, \ldots, V_p)| < 2p$, where $E(V_0, \ldots, V_p)$ denotes the set of edges with endpoints in different V_i .
- (ii) G has k edge-disjoint spanning trees if and only if there does not exist a partition of V into sets V_0, \ldots, V_p such that $|E(V_0, \ldots, V_p)| < kp$.

(3+3 points)

Exercise 12.4:

Let (E, \mathcal{F}) be a matroid, $A \in \mathcal{F}$ arbitrary, and $\mathcal{F}_A := \{X \Delta A \mid X \in \mathcal{F}\}$. Prove that (E, \mathcal{F}_A) is a greedoid.

(2 points)

Deadline: Thursday, January 30, 2014, before the lecture.