Linear and Integer Programming

- Time: Tuesdays and Thursdays, 12:15-13:55 (with 10 minutes break)
- Place: Gerhard-Konow-Hörsaal, Lennéstr. 2
- Website: www. or.uni-bonn.de/lectures/ws16/lgo_ws16.html
- Lecture notes and all slides can be found on the website.

Final Examination

- Oral examination
- Dates by appointment.

Exercise Classes

- Exercise classes are two hours per week.
- Assignments are released every Tuesday (starting in the second week).
- There will be programming exercises.
- 50% of all points in the assignments are required to participate in the exam.
- Students can work in groups of two.
- All participants of a group have to be able to explain their solutions.
- Exercise classes begin in the second week.

Possible Time Slots for the Exercise Classes

(1) Mo 10-12
(2) Tu 14-16
(3) We 10-12
(4) We 12-14
(5) Th 10-12
(6) Th 14-16
(7) Th 16-18
(8) Fr 10-12
(9) Fr 12-14

We will choose two of these time slots.
Application for the exercise classes: See the website www.or.uni-bonn.de/lectures/ws16/lgo_uebung_ws16.html

Modelling Optimization Problems as LPs

Defintion

Let G be a directed graph with capacities $u: E(G) \rightarrow \mathbb{R}_{>0}$ and let s and t be two vertices of G. A feasible s - t-flow in (G, u) is a mapping $f: E(G) \rightarrow \mathbb{R}_{\geq 0}$ with

- $f(e) \leq u(e)$ for all $e \in E(G)$ and
- $\sum_{e \in \delta_{G}^{+}(v)} f(e)-\sum_{e \in \delta_{G}^{-}(v)} f(e)=0$ for all $v \in V(G) \backslash\{s, t\}$.

The value of an s - t-flow f is $\operatorname{val}(f)=\sum_{e \in \delta_{G}^{+}(s)} f(e)-\sum_{e \in \delta_{G}^{-}(s)} f(e)$.

Modelling Optimization Problems as LPs

Maximum-Flow Problem
Instance: A directed Graph G, capacities $u: E(G) \rightarrow \mathbb{R}_{>0}$, vertices $s, t \in V(G)$ with $s \neq t$.

Task: \quad Find an s - t-flow $f: E(G) \rightarrow \mathbb{R}_{\geq 0}$ of maximum value.

LP-formulation:
max

$$
\sum_{e \in \delta_{G}^{+}(s)} x_{e}-\sum_{e \in \delta_{G}^{-}(s)} x_{e}
$$

s.t.

$$
\begin{array}{rlrl}
x_{e} & \geq 0 & \text { for } e \in E(G) \\
x_{e} & \leq u(e) & \text { for } e \in E(G) \\
\sum_{e \in \delta_{G}^{+}(v)} x_{e}-\sum_{e \in \delta_{G}^{-}(v)}\left(\begin{array}{lll}
x_{e} & =0 & \text { for } v \in V(G) \backslash\{s, t\}
\end{array} \quad . \quad l\right.
\end{array}
$$

Duality: Example

(P) $\max 12 x_{1}+10 x_{2}$

$$
\begin{array}{ll}
\text { s.t. } & 4 x_{1}+2 x_{2} \leq 5 \\
& 8 x_{1}+12 x_{2} \leq 7 \\
& 2 x_{1}-3 x_{2} \leq 1
\end{array}
$$

Goal: Find an upper bound on the optimum solution value.
Combine constraint 1 and 2:

$$
12 x_{1}+10 x_{2}=2 \cdot\left(4 x_{1}+2 x_{2}\right)+\frac{1}{2}\left(8 x_{1}+12 x_{2}\right) \leq 2 \cdot 5+\frac{1}{2} \cdot 7=13.5 .
$$

Combine constraint 2 and 3 :
$12 x_{1}+10 x_{2}=\frac{7}{6} \cdot\left(8 x_{1}+12 x_{2}\right)+\frac{4}{3} \cdot\left(2 x_{1}-3 x_{2}\right) \leq \frac{7}{6} \cdot 7+\frac{4}{3} \cdot 1=9.5$.

Duality: Example

(P) $\max 12 x_{1}+10 x_{2}$

$$
\begin{array}{llr}
\text { s.t. } & 4 x_{1}+2 x_{2} \leq 5 \\
& 8 x_{1}+12 x_{2} \leq 7 \\
& 2 x_{1}-3 x_{2} \leq 1
\end{array}
$$

General approach: Find numbers $u_{1}, u_{2}, u_{3} \in \mathbb{R}_{\geq 0}$ such that

$$
12 x_{1}+10 x_{2}=u_{1} \cdot\left(4 x_{1}+2 x_{2}\right)+u_{2} \cdot\left(8 x_{1}+12 x_{2}\right)+u_{3} \cdot\left(2 x_{1}-3 x_{2}\right) .
$$

$\Rightarrow 5 u_{1}+7 u_{2}+u_{3}$ is an upper bound on the value of any solution of (P).
\Rightarrow Chose u_{1}, u_{2}, u_{3} such that $5 u_{1}+7 u_{2}+u_{3}$ is minimized.

Duality: Example

$$
\text { (P) } \begin{array}{rr}
\max & 12 x_{1}+10 x_{2} \\
\text { s.t. } & 4 x_{1}+2 x_{2} \leq 5 \\
& 8 x_{1}+12 x_{2} \leq 7 \\
& 2 x_{1}-3 x_{2} \leq 1
\end{array}
$$

Formulation as a linear program:

Any solution of (D) gives an upper bound for (P).

Duality: Example

$$
\text { (P) } \begin{array}{rr}
\max & 12 x_{1}+10 x_{2} \\
\text { s.t. } & 4 x_{1}+2 x_{2} \leq 5 \\
& 8 x_{1}+12 x_{2} \leq 7 \\
& 2 x_{1}-3 x_{2} \leq 1
\end{array}
$$

Formulation as a linear program:

Any solution of (D) gives an upper bound for (P).

Duality: Example

$$
\text { (P) } \begin{array}{rr}
\max \quad 12 x_{1} & +10 x_{2} \\
\text { s.t. } & 4 x_{1}+2 x_{2} \leq 5 \\
& 8 x_{1}+12 x_{2} \leq 7 \\
& 2 x_{1}-3 x_{2} \leq 1
\end{array}
$$

Formulation as a linear program:

Any solution of (D) gives an upper bound for (P).

Duality: Example

$$
\text { (P) } \begin{array}{rr}
\max & 12 x_{1}+10 x_{2} \\
\text { s.t. } & 4 x_{1}+2 x_{2} \leq 5 \\
& 8 x_{1}+12 x_{2} \leq 7 \\
& 2 x_{1}-3 x_{2} \leq 1
\end{array}
$$

Formulation as a linear program:

Any solution of (D) gives an upper bound for (P).

Duality: Example

$$
\text { (P) } \begin{array}{rr}
\max & 12 x_{1}+10 x_{2} \\
\text { s.t. } & 4 x_{1}+2 x_{2} \leq 5 \\
& 8 x_{1}+12 x_{2} \leq 7 \\
& 2 x_{1}-3 x_{2} \leq 1
\end{array}
$$

Formulation as a linear program:

$$
\text { (D) } \begin{array}{rlrl}
\min 5 u_{1}+7 u_{2}+u_{3} & \\
\text { s.t. } 4 u_{1}+8 u_{2}+2 u_{3} & =12 \\
& =10 \\
& 2 u_{1}+12 u_{2}-3 u_{3} & =10 \\
& u_{1} & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & &
\end{array}
$$

Any solution of (D) gives an upper bound for (P).

Fourier-Motzkin Elimination I

Given a system of inequalities, check if a solution exists.

$$
\begin{array}{r}
3 x+2 y+4 z \leq 10 \\
3 x+2 z \leq 9 \\
2 x-y+5 \\
-x+2 y-z \leq 3 \\
-2 x \\
-2 y+2 z \leq 7
\end{array}
$$

First step: Get rid of variable x.

Fourier-Motzkin Elimination II

$$
\begin{array}{r}
3 x+2 y+4 z \leq 10 \\
3 x+2 z \leq 9 \\
2 x-y+5 \\
-x+2 y-z \leq 3 \\
-2 x \\
-2 y+2 z \leq 7
\end{array}
$$

is equivalent to

$$
\begin{aligned}
& x \leq \frac{10}{3}-\frac{2}{3} y-\frac{4}{3} z \\
& x \leq 3 \\
& x \leq \frac{2}{3} z \\
& x \leq \frac{5}{2} y \\
& x \geq-3+2 y-z \\
& x \geq-2 \\
& \\
& \\
& \\
& 2 y+2 z \leq 7
\end{aligned}
$$

Fourier-Motzkin Elimination III

$$
\begin{aligned}
& x \leq \frac{10}{3}-\frac{2}{3} y-\frac{4}{3} z \\
& x \leq 3 \\
& x \leq \frac{2}{2} z+\frac{1}{2} y \\
& x \\
& x \geq-3+2 y-2 \\
& x \\
& x
\end{aligned}
$$

This system is feasible if and only if the following system has a solution:

$$
\begin{aligned}
\min \left\{\frac{10}{3}-\frac{2}{3} y-\frac{4}{3} z, \quad 3-\frac{2}{3} z,\right. & \begin{array}{r}
\left.\frac{5}{2}+\frac{1}{2} y\right\} \\
2 y+2 z
\end{array} \geq \max \{-3+2 y-z,
\end{aligned}
$$

Fourier-Motzkin Elimination IV

$$
\min \left\{\frac{10}{3}-\frac{2}{3} y-\frac{4}{3} z, \quad 3-\frac{2}{3} z, \quad \frac{5}{2}+\frac{1}{2} y\right\} \geq \quad \max \{-3+2 y-z, \quad-2\}
$$

This system can be rewritten in the following way:

$$
\begin{aligned}
\frac{10}{3}-\frac{2}{3} y-\frac{4}{3} z & \geq-3+2 y-z \\
\frac{10}{3}-\frac{2}{3} y-\frac{4}{3} z & \geq-2 \\
3-\frac{2}{3} z & \geq-3+2 y-z \\
3-\frac{2}{3} z & \geq-2 \\
\frac{5}{2}+\frac{1}{2} y & \geq-3+2 y-z \\
\frac{5}{2}+\frac{1}{2} y & \geq-2 \\
2 y+2 z & \leq 7
\end{aligned}
$$

Fourier-Motzkin Elimination V

Conversion in standard form:

$$
\begin{aligned}
& \frac{8}{3} y+\frac{1}{3} z \leq \frac{19}{3} \\
& \frac{2}{3} y+\frac{4}{3} z \leq \frac{16}{3} \\
& \frac{8}{3} y-z \leq 6 \\
& \frac{2}{3} z \leq 5 \\
& \frac{3}{2} y-z \leq \frac{11}{2} \\
& -\frac{1}{2} y \quad \leq \quad \frac{9}{2} \\
& 2 y+2 z \leq 7
\end{aligned}
$$

Iterate these steps and remove all variables.

Corollary

Let $A, B, C, D, E, F, G, H, K$ be matrices and a, b, c, d, e, f be vectors of appropriate dimensions such that:

$$
\left(\begin{array}{lll}
A & B & C \\
D & E & F \\
G & H & K
\end{array}\right) \text { is an } m \times n \text {-matrix, }
$$

$\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$ is a vector of length m and $\left(\begin{array}{l}d \\ e \\ f\end{array}\right)$ is a vector of length n. Then
provided that both sets are non-empty.

Corollary

Let $A, B, C, D, E, F, G, H, K$ be matrices and a, b, c, d, e, f be vectors of appropriate dimensions such that:

$$
\left(\begin{array}{lll}
A & B & C \\
D & E & F \\
G & H & K
\end{array}\right) \text { is an } m \times n \text {-matrix, }
$$

$\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$ is a vector of length m and $\left(\begin{array}{l}d \\ e \\ f\end{array}\right)$ is a vector of length n. Then
provided that both sets are non-empty.

Corollary

Let $A, B, C, D, E, F, G, H, K$ be matrices and a, b, c, d, e, f be vectors of appropriate dimensions such that:

$$
\left(\begin{array}{lll}
A & B & C \\
D & E & F \\
G & H & K
\end{array}\right) \text { is an } m \times n \text {-matrix, }
$$

$\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$ is a vector of length m and $\left(\begin{array}{l}d \\ e \\ f\end{array}\right)$ is a vector of length n. Then
provided that both sets are non-empty.

Corollary

Let $A, B, C, D, E, F, G, H, K$ be matrices and a, b, c, d, e, f be vectors of appropriate dimensions such that:

$$
\left(\begin{array}{lll}
A & B & C \\
D & E & F \\
G & H & K
\end{array}\right) \text { is an } m \times n \text {-matrix, }
$$

$\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$ is a vector of length m and $\left(\begin{array}{l}d \\ e \\ f\end{array}\right)$ is a vector of length n. Then
provided that both sets are non-empty.

Corollary

Let $A, B, C, D, E, F, G, H, K$ be matrices and a, b, c, d, e, f be vectors of appropriate dimensions such that:

$$
\left(\begin{array}{lll}
A & B & C \\
D & E & F \\
G & H & K
\end{array}\right) \text { is an } m \times n \text {-matrix, }
$$

$\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$ is a vector of length m and $\left(\begin{array}{l}d \\ e \\ f\end{array}\right)$ is a vector of length n. Then
provided that both sets are non-empty.

Max-Flow Problem

G Digraph, $u: E(G) \rightarrow \mathbb{R}_{>0}, s, t \in V(G)$ with $s \neq t$.
LP-formulation:

$$
\begin{array}{lcll}
\max & \sum_{e \in \delta_{G}^{+}(s)} x_{e}-\sum_{e \in \delta_{G}^{-}(s)} x_{e} & \\
\text { s.t. } & x_{e} \geq 0 & \text { for } e \in E(G) \\
x_{e} & \leq u(e) & \text { for } e \in E(G) \\
& \sum_{e \in \delta_{G}^{+}(v)} x_{e}-\sum_{e \in \delta_{G}^{-}(v)} x_{e} & =0 & \text { for } v \in V(G) \backslash\{s, t\}
\end{array}
$$

Dual LP:

$$
\left.\begin{array}{rl}
\min & \sum_{e \in E(G)} u(e) y_{e} \\
& \\
\text { s.t. } & y_{e}
\end{array}\right) 0 \quad \text { for } e \in E(G)
$$

Max-Flow Problem

G Digraph, $u: E(G) \rightarrow \mathbb{R}_{>0}, s, t \in V(G)$ with $s \neq t$.
LP-formulation:

$$
\begin{array}{lcll}
\max & \sum_{e \in \delta_{G}^{+}(s)} x_{e}-\sum_{e \in \delta_{G}^{-}(s)} x_{e} & \\
& x_{e} & \geq 0 & \text { for } e \in E(G) \\
\text { s.t. } & x_{e} \leq u(e) & \text { for } e \in E(G) \\
& \sum_{e \in \delta_{G}^{+}(v)} x_{e}-\sum_{e \in \delta_{G}^{-}(v)} x_{e} & =0 & \text { for } v \in V(G) \backslash\{s, t\}
\end{array}
$$

Dual LP:

$$
\left.\begin{array}{rl}
\min & \sum_{e \in E(G)} u(e) y_{e} \\
& \\
\text { s.t. } & y_{e}
\end{array}\right) 0 \quad \text { for } e \in E(G)
$$

Theorem

Let $P \subseteq\left\{x \in \mathbb{R}^{n} \mid A x=b\right\}$ be a non-empty polyhedron of dimension $n-\operatorname{rank}(A)$. Let $A^{\prime} x \leq b^{\prime}$ be a minimal system of inequalities such that $P=\left\{x \in \mathbb{R}^{n} \mid A x=b, A^{\prime} x \leq b^{\prime}\right\}$. Then, every inequality in $A^{\prime} x \leq b^{\prime}$ is facet-defining for P and every facet of P is given by an inequality of $A^{\prime} x \leq b^{\prime}$.

Simplex Algorithm: Example I

$$
\begin{aligned}
& \max \quad x_{1}+x_{2}
\end{aligned}
$$

Initial basis: $\{3,4,5\} . \Rightarrow A_{B}=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$
Simplex tableau:

$$
\begin{array}{rlllll}
x_{3} & =1 & + & x_{1} & - & x_{2} \\
x_{4} & =3 & - & x_{1} & & \\
x_{5} & =2 & & & - & x_{2} \\
\hline z & = & & x_{1} & + & x_{2}
\end{array}
$$

Recent solution: (0,0,1,3,2)

Simplex Algorithm: Example I

$$
\begin{array}{rllll}
x_{3} & =1 & +x_{1} & - & x_{2} \\
x_{4} & =3 & -x_{1} & & \\
x_{5} & =2 & & & - \\
x_{2} \\
\hline z & = & & x_{1}+ & x_{2}
\end{array}
$$

Increase exactly one of the non-basic variables with positive coefficient in the objective function.
We choose x_{2}. How much can we increase it?
Constraints:
$x_{3}=1+x_{1}-x_{2}: \quad x_{2}$ cannot get larger than 1 .
$x_{4}=3-x_{1} \quad: \quad$ no constraint on x_{2}.
$x_{5}=2 \quad-x_{2}: \quad x_{2}$ cannot get larger than 2.
Strictest constraint: $x_{3}=1+x_{1}-x_{2}$
\Rightarrow Replace 3 by 2 in B.

Simplex Algorithm: Example I

First tableau:

$$
\begin{array}{rllll}
x_{3} & =1 & +x_{1} & - & x_{2} \\
x_{4} & =3 & -x_{1} & & \\
x_{5} & =2 & & & - \\
x_{2} \\
\hline z & = & & x_{1} & + \\
x_{2}
\end{array}
$$

Replace 3 by 2 in the basis B : $B=\{2,4,5\}$:
$x_{2}=1+x_{1}-x_{3}$.
Second tableau:

$$
\begin{array}{rl}
x_{2} & =1+x_{1}-x_{3} \\
x_{4} & =3-x_{1} \\
x_{5} & =1-x_{1} \\
\hline z & =1+x_{3} \\
\hline z & 2 x_{1}
\end{array} x_{3}
$$

Recent solution: ($0,1,0,3,1$)

Simplex Algorithm: Example I

Second tableau:

$$
\begin{aligned}
x_{2} & =1+x_{1}-x_{3} \\
x_{4} & =3-x_{1} \\
x_{5} & =1-x_{1}+x_{3} \\
\hline z & =1+2 x_{1}-x_{3}
\end{aligned}
$$

Only one candidate: x_{1}
$x_{5}=1-x_{1}+x_{3}$ is critical. Replace 5 by 1 in B : $B=\{1,2,4\}$.
$x_{1}=1+x_{3}-x_{5}$.
Third tableau:

$$
\begin{aligned}
x_{1} & =1 \\
x_{2} & =2 \\
x_{4} & =2-x_{3}
\end{aligned}-x_{5}-x_{3}+x_{5} .
$$

Recent solution: $x=(1,2,0,2,0)$.

Simplex Algorithm: Example I

Third tableau:

$$
\begin{aligned}
& x_{1}=1+x_{3}-x_{5} \\
& x_{2}=2 \\
& x_{4}=2-x_{3} \\
& \hline z=3+x_{5} \\
& \hline z+x_{3}-2 x_{5}
\end{aligned}
$$

Only one candidate: x_{3}
$x_{4}=2-x_{3}+x_{5}$ is critical. Replace 4 by 3 in $B: B=\{1,2,3\}$.
$x_{3}=2-x_{4}+x_{5}$
Fourth tableau:

$$
\left.\begin{array}{rl}
x_{1} & =3-x_{4} \\
x_{2} & =2 \\
x_{3} & =2-x_{4} \\
\hline z & =5-x_{5} \\
\hline z & -x_{4}
\end{array}\right) x_{5}
$$

Recent solution: $x=(3,2,2,0,0)$.

Simplex Algorithm: Example I

Fourth tableau:

$$
\begin{aligned}
& x_{1}=3-x_{4} \\
& x_{2}=2 \quad-x_{5} \\
& \begin{array}{c}
x_{3}=2-x_{4}+x_{5} \\
\hline z=5-x_{4}-x_{5}
\end{array}
\end{aligned}
$$

Recent solution: $x=(3,2,2,0,0)$.
This is an optimum solution!

Simplex Algorithm: Example II

Second Example: Unboundedness

Simplex Algorithm: Example II: Unboundedness

$$
\begin{aligned}
& \max \quad x_{1} \\
& \text { s.t. } \begin{array}{rllll}
x_{1} & -x_{2}+x_{3} & & =1 \\
-x_{1} & +x_{2} & & +x_{4} & =2 \\
x_{1} & , x_{2}, x_{3}, & x_{4} & \geq 0
\end{array}
\end{aligned}
$$

Initial basis: $\mathrm{B}=\{3,4\}$
Simplex Tableau:

$$
\begin{aligned}
x_{3} & =1-x_{1}+x_{2} \\
x_{4} & =2+x_{1}-x_{2} \\
\hline z & =\frac{x_{1}}{}
\end{aligned}
$$

Recent solution: $x=(0,0,1,2)$.

Simplex Algorithm: Example II: Unboundedness

First Tableau:

$$
\begin{aligned}
& x_{3}=1-x_{1}+x_{2} \\
& x_{4}=2+x_{1}-x_{2} \\
& \hline z= \\
& x_{1}
\end{aligned}
$$

Only one candidate: $x_{1} \cdot x_{3}=1-x_{1}+x_{2}$ is critical. Replace 3 by 1 in $B: B=\{1,4\}$.
$x_{1}=1+x_{2}-x_{3}$.
Second Tableau:

$$
\begin{aligned}
x_{1} & =1+x_{2}-x_{3} \\
x_{4} & =3 \\
\hline z & =1+x_{2}-x_{3}
\end{aligned}
$$

Recent solution:
$x=(1,0,0,3)$.

Simplex Algorithm: Example II: Unboundedness

Second Tableau:

$$
\begin{aligned}
x_{1} & =1+x_{2}-x_{3} \\
x_{4} & =3 \\
\hline z & =1+x_{2}-x_{3}
\end{aligned}
$$

Only one candidate: x_{2}. No constraint for it!
\Rightarrow The LP is unbounded

Simplex Algorithm: Example III

Second Example: Degeneracy

Simplex Algorithm: Example III: Degeneracy

Initial basis: $B=\{3,4\}$
Simplex Tableau:

$$
\begin{array}{rlrlr}
x_{3} & = & x_{1} & - & x_{2} \\
x_{4} & = & 2 & -x_{1} & \\
\hline z & = & & & x_{2}
\end{array}
$$

$\Rightarrow x=(0,0,0,2):$ degenerated solution.

Simplex Algorithm: Example III: Degeneracy

First Tableau:

$$
\begin{array}{rlrl}
x_{3} & = & x_{1} & - \\
x_{2} \\
x_{4} & = & 2-x_{1} & \\
\hline z & = & & x_{2}
\end{array}
$$

Want to increase $x_{2} . x_{3}=x_{1}-x_{2}$ is critical. Replace 3 by 2 in B :
$B=\{2,4\}$.
$x_{2}=x_{1}-x_{3}$. We will replace 3 by 2 in the basis.
But: We cannot increase x_{2}.
Second Tableau:

$$
\begin{aligned}
x_{2} & = & x_{1} & -x_{3} \\
x_{4} & = & 2-x_{1} & \\
\hline z & = & x_{1} & -x_{3}
\end{aligned}
$$

Recent solution: $x=(0,0,0,2)$.

Simplex Algorithm: Example III: Degeneracy

Second Tableau:

$$
\begin{aligned}
x_{2} & = & x_{1} & -x_{3} \\
x_{4} & = & 2-x_{1} & \\
\hline z & = & x_{1} & -x_{3}
\end{aligned}
$$

Increase $x_{1}, x_{4}=2-x_{1}$ is critical. $x_{1}=2-x_{4}$. New base $B=\{1,2,0,0\}$.
Third Tableau:

$$
\begin{aligned}
x_{1} & =2 \\
x_{2} & =2-x_{3}-x_{4} \\
\hline z & =2-x_{3} \\
\hline z & x_{4}
\end{aligned}
$$

Optimum solution: $x=(2,2,0,0)$.

The Simplex Algorithm

Algorithm 1: Simplex Algorithm
Input: $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$, and $c \in \mathbb{R}^{n}$
Output: $\tilde{x} \in\left\{x \in \mathbb{R}^{n} \mid A x=b, x \geq 0\right\}$ maximizing $c^{t} x$ or the message that $\max \left\{C^{t} x \mid A x=b, x \geq 0\right\}$ is unbounded or infeasible
1 Compute a feasible basis B;
2 If no such basis exists, stop with the message "INFEASIBLE";
3 Set $N=\{1, \ldots, n\} \backslash B$ and compute the feasible basic solution x for B;
4 Compute the simplex tableau $\begin{array}{lll}x_{B} & =p+Q x_{N} \\ z & =z_{0}+r^{t} x_{N}\end{array}$ for B;
5 if $r \leq 0$ then
L return $\tilde{x}=x$;
6 Choose $\alpha \in N$ with $r_{\alpha}>0$;
7 if $q_{i \alpha} \geq 0$ for all $i \in B$ then
return "UNBOUNDED";
8 Choose $\beta \in B$ with $q_{\beta \alpha}<0$ and $\frac{p_{\beta}}{q_{\beta \alpha}}=\max \left\{\left.\frac{p_{i}}{q_{i \alpha}} \right\rvert\, q_{i \alpha}<0, i \in B\right\}$;
9 Set $B=(B \backslash\{\beta\}) \cup\{\alpha\}$;
10 GOTO line 3;

Definition

Let G be an directed graph with capacities $u: E(G) \rightarrow \mathbb{R}_{>0}$ and numbers $b: V(G) \rightarrow \mathbb{R}$ with $\sum_{v \in V(G)} b(v)=0$. A feasible
b-flow in (G, u, b) is a mapping $f: E(G) \rightarrow \mathbb{R}_{\geq 0}$ with

- $f(e) \leq u(e)$ for all $e \in E(G)$ and
- $\sum_{e \in \delta_{G}^{+}(v)} f(e)-\sum_{e \in \delta_{G}^{-}(v)} f(e)=b(v)$ for all $v \in V(G)$.

Notation:

- $b(v)$: balance of v.
- If $b(v)>0$, we call it the supply of v.
- If $b(v)<0$, we call it the demand of v.
- Nodes v of G with $b(v)>0$ are called sources.
- Nodes v with $b(v)<0$ are called sinks.

Minimum-Cost Flow Problem

- Input: A directed graph G, capacities $u: E(G) \rightarrow \mathbb{R}_{>0}$, numbers $b: V(G) \rightarrow \mathbb{R}$ with $\sum_{v \in V(G)} b(v)=0$, edge costs $c: E(G) \rightarrow \mathbb{R}$.
- Task: Find a b-flow f minimizing $\sum_{e \in E(G)} c(e) \cdot f(e)$.

Definition

Let G be a directed graph.

- For $e=(v, w)$ let $\overleftarrow{e}=(w, v)$ its reverse edge.
- Define \overleftrightarrow{G} by $V(\stackrel{\leftrightarrow}{G})=V(G)$ and $E(\stackrel{\leftrightarrow}{G})=E(G) \dot{U}\{\overleftarrow{e} \mid e \in E(G)\}$.
- Edge costs $c: E(G) \rightarrow \mathbb{R}$ are extended to $E(\overleftrightarrow{G})$ by $c(\overleftarrow{e}):=-c(e)$.
- Let (G, u, b, c) be a Minimum-Cost Flow instance and let f be a b-flow in (G, u). The residual graph $G_{u, f}$ is defined by

$$
\begin{aligned}
& V\left(G_{u, f}\right):=V(G) \text { and } \\
& E\left(G_{u, f}\right):=\{e \in E(G) \mid f(e)<u(e)\} \quad \dot{\cup} \quad\{\overleftarrow{e} \in E(\stackrel{\leftrightarrow}{G}) \mid f(e)>0\}
\end{aligned}
$$

- For $e \in E(G)$ we define the residual capacity by

$$
u_{f}(e)=u(e)-f(e) \text { and by } u_{f}(\overleftarrow{e})=f(e) .
$$

Augmenting Flow

If P is a subgraph of the residual graph $G_{u, f}$ then augmenting f along P by γ (for $\gamma>0$) means increasing P on forward edges in P (i.e. edges in $E(G) \cap E(P)$) by γ and reducing it on reverse edges in P by γ.

Algorithm 2: Network Simplex Algorithm

Input: A Min-Cost-Flow instance (G, u, b, c);
A strongly feasible tree structure (r, T, L, U).
Output: A minimum-cost flow f.
1 Compute b-flow f and potential π associated to (r, T, L, U);
$2 e_{0}:=$ an edge with $e_{0} \in L$ and $c_{\pi}\left(e_{0}\right)<0$ or with $e_{0} \in U$ and $c_{\pi}\left(e_{0}\right)>0$;
3 if (No such edge exists) then return f
$4 C$:= the fund. circuit of e_{0} (if $e_{0} \in L$) or of e_{0} (if $e_{0} \in U$) and let $\rho=C_{\pi}\left(e_{0}\right)$;
$5 \gamma:=\min _{e^{\prime} \in E(C)} u_{f}\left(e^{\prime}\right)$.
$6 e^{\prime}$:= last edge on C with $u_{f}\left(e^{\prime}\right)=\gamma$ when C is traversed starting at the peak;
7 Let e_{1} be the corresponding edge in G, i.e. $e^{\prime}=e_{1}$ or $e^{\prime}=\overleftarrow{e_{1}}$;
8 Remove e_{0} from L or U;
9 Set $T=\left(T \cup\left\{e_{0}\right\}\right) \backslash\left\{e_{1}\right\}$;
10 if $e^{\prime}=e_{1}$ then Set $U=U \cup\left\{e_{1}\right\}$;
11 else Set $L=L \cup\left\{e_{1}\right\}$;
12 Augment f along γ by C;
13 Let X be the connected component of $\left(V(G), T \backslash\left\{e_{0}\right\}\right)$ that contains r;
14 if $e_{0} \in \delta^{+}(X)$ then Set $\pi(v)=\pi(v)+\rho$ for $v \in V(G) \backslash X$;
15 if $e_{0} \in \delta^{-}(X)$ then Set $\pi(v)=\pi(v)-\rho$ for $v \in V(G) \backslash X$;
16 go to line 2;

Illustration:

Illustration:

Cost of fundamental circuit $=c_{\pi}\left(e_{0}\right)$.

Half-Ball Lemma

$$
B^{n} \cap\left\{x \in \mathbb{R}^{n} \mid x_{1} \geq 0\right\} \subseteq E
$$

with

$$
E=\left\{x \in \mathbb{R}^{n} \left\lvert\, \frac{(n+1)^{2}}{n^{2}}\left(x_{1}-\frac{1}{n+1}\right)^{2}+\frac{n^{2}-1}{n^{2}} \sum_{i=2}^{n} x_{i}^{2} \leq 1\right.\right\}
$$

Moreover, $\frac{\operatorname{vol}(E)}{\operatorname{vol}\left(B^{n}\right)} \leq e^{-\frac{1}{2(n+1)}}$.

Algorithm 3: Idealized Ellipsoid Algorithm
Input: A separation oracle for a closed convex set $K \subseteq \mathbb{R}^{n}$, a number $R>0$ with $K \subseteq\left\{x \in \mathbb{R}^{n} \mid x^{t} x \leq R^{2}\right\}$, and a number $\epsilon>0$.
Output: An $x \in K$ or the message "vol $(K)<\epsilon$ ".
$1 p_{0}:=0, A_{0}:=R^{2} I_{n} ;$
2 for $k=0, \ldots, N(R, \epsilon):=\left\lfloor 2(n+1)\left(n \ln (2 R)+\ln \left(\frac{1}{\epsilon}\right)\right)\right\rfloor$ do
3 if $p_{k} \in K$ then

return p_{k};

Let $\bar{a} \in \mathbb{R}^{n}$ be a vector with $\bar{a}^{t} y \geq \bar{a}^{t} p_{k}$ for all $y \in K$;
$b_{k}:=\frac{A_{k} \bar{a}}{\sqrt{\bar{a}^{2} A_{k}} \bar{a} \bar{a}} ;$
$p_{k+1}:=p_{k}+\frac{1}{n+1} b_{k} ;$
$8 \quad A_{k+1}:=\frac{n^{2}}{n^{2}-1}\left(A_{k}-\frac{2}{n+1} b_{k} b_{k}^{t}\right)$;
9 return "vol $(K)<\epsilon$ ";
$\widetilde{p_{k}}$ and $\widetilde{A_{k}}$: exact values
p_{k} and A_{k} : rounded values

$$
x \in K:
$$

- $\left(x-\widetilde{p}_{k}\right)^{t}{\widetilde{A_{k}}}^{-1}\left(x-\widetilde{p}_{k}\right) \leq 1$
- $\left(x-p_{k}\right)^{t} A_{k}^{-1}\left(x-p_{k}\right) \leq 1+2 \sqrt{n} \delta\left\|\widetilde{A_{k}}{ }^{-1}\right\|\left(R+\left\|\widetilde{p_{k}}\right\|\right)+$ $n \delta^{2}\left\|{\widetilde{A_{k}}}^{-1}\right\|+\left(R+\left\|p_{k}\right\|\right)^{2}\left\|A_{k}^{-1}\right\| \cdot\left\|{\widetilde{A_{k}}}^{-1}\right\| \cdot n \delta$

Adjust $\widetilde{A_{k}}$ by multiplying it by $\mu=1+\frac{1}{2 n(n+1)} . \Rightarrow$

$$
\left(x-\widetilde{p}_{k}\right)^{t} \widetilde{A}_{k}^{-1}\left(x-\widetilde{p}_{k}\right)=\frac{1}{1+\frac{1}{2 n(n+1)}}<1-\frac{1}{4 n^{2}} .
$$

- $\left(x-\widetilde{p}_{k}\right)^{t}{\widetilde{A_{k}}}^{-1}\left(x-\widetilde{p}_{k}\right) \leq 1-\frac{1}{4 n^{2}}$
- $\left(x-p_{k}\right)^{t} A_{k}^{-1}\left(x-p_{k}\right) \leq 1-\frac{1}{4 n^{2}}+2 \sqrt{n} \delta\left\|\widetilde{A_{k}}{ }^{-1}\right\|\left(R+\left\|\widetilde{p_{k}}\right\|\right)+$ $n \delta^{2}\left\|{\widetilde{A_{k}}}^{-1}\right\|+\left(R+\left\|p_{k}\right\|\right)^{2}\left\|A_{k}^{-1}\right\| \cdot\left\|\widetilde{A_{k}}{ }^{-1}\right\| \cdot n \delta$

Goal is to choose δ such that

- $2 \sqrt{n} \delta\left\|{\widetilde{A_{k}}}^{-1}\right\|\left(R+\left\|\widetilde{p_{k}}\right\|\right)+n \delta^{2}\left\|{\widetilde{A_{k}}}^{-1}\right\|+\left(R+\left\|p_{k}\right\|\right)^{2}\left\|A_{k}^{-1}\right\| \cdot\left\|{\widetilde{A_{k}}}^{-1}\right\| n \delta<\frac{1}{4 n^{2}}$
- $\delta\left\|\widetilde{A_{k+1}}{ }^{-1}\right\|<\frac{1}{4(n+1)^{3}}$

Algorithm 4: Ellipsoid Algorithm
Input: A separation oracle for a closed convex set $K \subseteq \mathbb{R}^{n}$, a number $R>0$ with $K \subseteq\left\{x \in \mathbb{R}^{n} \mid x^{t} x \leq R^{2}\right\}$, and a number $\epsilon>0$
Output: An $x \in K$ or the message "vol $(K)<\epsilon$ ".
$1 p_{0}:=0, A_{0}:=R^{2} I_{n}$;
2 for $k=0, \ldots, N(R, \epsilon):=\left\lceil 8(n+1)\left(n \ln (2 R)+\ln \left(\frac{1}{\epsilon}\right)\right)\right\rceil$ do
3 if $p_{k} \in K$ then return p_{k};
Let $\bar{a} \in \mathbb{R}^{n}$ be a vector with $\bar{a}^{t} y \geq \bar{a}^{t} p_{k}$ for all $y \in K$;
$b_{k}:=\frac{A_{k} \bar{a}}{\sqrt{\bar{a}^{2} A_{k}} \bar{a} \bar{a}} ;$
p_{k+1} an approximation of $\widetilde{p_{k+1}}:=p_{k}+\frac{1}{n+1} b_{k}$ with maximum error $\delta<\left(2^{6(N(R, \epsilon)+1)} 16 n^{3}\right)^{-1}$;
$8 \quad A_{k+1}$ a symmetric approximation of
$\widetilde{A_{k+1}}:=\left(1+\frac{1}{2 n(n+1)}\right) \frac{n^{2}}{n^{2}-1}\left(A_{k}-\frac{2}{n+1} b_{k} b_{k}^{t}\right)$ with maximum error $\delta ;$
9 return "vol $(K)<\epsilon$ ";

Let $P \subseteq \mathbb{R}^{n}$ be a rational polytope and let $x_{0} \in P$ in the interior of P. Let $T \in \mathbb{N} \backslash\{0\}$ such that size $\left(x_{0}\right) \leq \log (T)$ and $\operatorname{size}(x) \leq \log (T)$ for all vertices x of P.

Theorem (Separation \rightarrow Optimization)

Let $c \in \mathbb{Q}^{n}$. Given n, c, x_{0}, T and a polynomial-time separation oracle for P, a vertex x^{*} of P attaining max $\left\{c^{t} x \mid x \in P\right\}$ can be found in time polynomial in $n, \log (T)$ and size(c).

Theorem (Optimization \rightarrow Separation)

Let $y \in \mathbb{Q}^{n}$. Given n, y, x_{0}, T and an oracle which for given $c \in \mathbb{Q}^{n}$ returns a vertex x^{*} of P attaining $\max \left\{c^{t} x \mid x \in P\right\}$, we can implement a separation oracle for P and y with running time polynomial in n, $\log (T)$ and size (y). If $y \notin P$, we can find with this running time a facet-defining inequality of P that is violated by y.

Interior Point Methods

Primal-dual pair:

$$
\begin{align*}
& \text { Primal: } \quad \max c^{t} x \\
& \text { s.t. } A x+s \tag{1}\\
&=b \\
& \geq 0
\end{align*}
$$

Dual: $\quad \min b^{t} y$

$$
\begin{align*}
\text { s.t. } \quad A^{t} y & =c \tag{2}\\
y & \geq 0
\end{align*}
$$

We want to compute a solution of the dual LP.
May assume:

- Columns of A are linearly independent
- More rows than columns

Combined constraints:

$$
\begin{align*}
A x+s & =b \\
A^{t} y & =c \\
y^{t} s & =0 \tag{3}\\
y & \geq 0 \\
s & \geq 0
\end{align*}
$$

New set of constraints:

$$
\begin{align*}
A x+s & =b \\
A^{t} y & =c \\
\sum_{i=1}^{m}\left(\frac{y_{i} s_{i}}{\mu}-1\right)^{2} & \leq \frac{1}{4} \tag{4}\\
y & >0 \\
s & >0
\end{align*}
$$

General strategy:
(I) Compute an initial solution of a modified version of (4): \checkmark
(II) Reduce μ by a constant factor and adapt x, y and s to the new value of μ such that we again get a solution of (4). Iterate this step until μ is small enough.
(III) Compute an optimum solution of the dual LP.

Assumption: We have a solution $\mu^{(k)}, x^{(k)}, y^{(k)}, s^{(k)}$ of the system

$$
\begin{aligned}
\tilde{A} x+s & =\tilde{b} \\
\tilde{A}^{t} y & =\tilde{c} \\
\sum_{i=1}^{m+2}\left(\frac{y_{i} s_{i}}{\mu}-1\right)^{2} & \leq \frac{1}{4} \\
y & >0 \\
s & >0
\end{aligned}
$$

Goal: Find solution $\mu^{(k+1)}, x^{(k+1)}, y^{(k+1)}, s^{(k+1)}$ with $\mu^{(k+1)}=(1-\delta) \mu^{(k)}(\delta \in(0,1)$ will be defined later $)$.

Notation:

- $x^{(k+1)}=x^{(k)}+f$
- $y^{(k+1)}=y^{(k)}+g$
- $\tilde{A}^{t} g=0$
- $s^{(k+1)}=s^{(k)}+h$
- $\tilde{A} f+h=0$

We want $y_{i}^{(k+1)} s_{i}^{(k+1)}$ to be close to $\mu^{(k+1)}$.
We have

$$
\begin{aligned}
y_{i}^{(k+1)} s_{i}^{(k+1)} & =\left(y_{i}^{(k)}+g_{i}\right)\left(s_{i}^{(k)}+h_{i}\right) \\
& =y_{i}^{(k)} s_{i}^{(k)}+g_{i} s_{i}^{(k)}+y_{i}^{(k)} h_{i}+g_{i} h_{i}
\end{aligned}
$$

We demand $y_{i}^{(k)} s_{i}^{(k)}+g_{i} s_{i}^{(k)}+y_{i}^{(k)} h_{i}=\mu^{(k+1)}$

Equation system:

$$
\begin{align*}
\tilde{A}^{t} g & =0 \\
\tilde{A} f+h & =0 \tag{*}\\
s_{i}^{(k)} g_{i}+y_{i}^{(k)} h_{i} & =\mu^{(k+1)}-y_{i}^{(k)} s_{i}^{(k)} \quad i=1, \ldots, m+2
\end{align*}
$$

Proposition

If $A x \leq b, a^{t} x \leq \beta$ is TDI with a integral, then $A x \leq b, a^{t} x=\beta$ is also TDI.

Proof: Let c be an integral vector for which

$$
\begin{align*}
& \max \left\{c^{t} x \mid A x \leq b, a^{t} x=\beta\right\} \\
= & \min \left\{b^{t} y+\beta(\lambda-\mu) \mid y \geq 0, \lambda, \mu \geq 0, A^{t} y+(\lambda-\mu) a=c\right\} \tag{5}
\end{align*}
$$

is finite. Let $x^{*}, y^{*}, \lambda^{*}, \mu^{*}$ be optimum primal and dual solutions. Set $\tilde{c}:=c+\left\lceil\mu^{*}\right\rceil a$. Then,

$$
\begin{align*}
& \max \left\{\tilde{c}^{t} x \mid A x \leq b, a^{t} x \leq \beta\right\} \tag{6}\\
= & \min \left\{b^{t} y+\beta \lambda \mid y \geq 0, \lambda \geq 0, A^{t} y+\lambda a=\tilde{c}\right\}
\end{align*}
$$

is finite because x^{*} is feasible for the maximum and y^{*} and $\lambda^{*}+\left\lceil\mu^{*}\right\rceil-\mu^{*}$ are feasible for the minimum.

Theorem

For each rational polyhedron $P \subseteq \mathbb{R}^{n}$ there exists a rational TDI-system $A x \leq b$ with $A \in \mathbb{Z}^{m \times n}$ and $P=\left\{x \in \mathbb{R}^{n} \mid A x \leq b\right\}$. The vector b can be chosen to be integral if and only if P is integral.

Proof: W.I.o.g. $P \neq \emptyset$. For each minimal face F of P, define

$$
C_{F}:=\left\{c \in \mathbb{R}^{n} \mid c^{t} z=\max \left\{c^{t} x \mid x \in P\right\} \text { for all } z \in F\right\} .
$$

Then, C_{F} is a polyhedral cone. To see this, let $P=\{\tilde{A} x \leq \tilde{b}\}$ be some description of P. Then C_{F} is generated by the rows of \tilde{A} that are active in F.
Let F be a minimal face, and let a_{1}, \ldots, a_{t} be a Hilbert basis generating C_{F}. Choose $x_{0} \in F$, and define $\beta_{i}:=a_{i}^{t} x_{0}$ for $i=1, \ldots, t$. Then, $\beta_{i}=\max \left\{a_{i}^{t} x \mid x \in P\right\}(i=1, \ldots, t)$. Let \mathcal{S}_{F} be the system $a_{1}^{t} x \leq \beta_{1}, \ldots, a_{t}^{t} x \leq \beta_{t}$. All inequalities in \mathcal{S}_{F} are valid for P. Let $A x \leq b$ be the union of the systems \mathcal{S}_{F} over all minimal faces F of P. Then, $P \subseteq\left\{x \in \mathbb{R}^{n} \mid A x \leq b\right\}$.

Theorem

A matrix $A=\left(a_{i j}\right)_{\substack{\begin{subarray}{c}{1=1, \ldots, m \\ j=1, \ldots, n} }}\end{subarray}} \in \mathbb{Z}^{m \times n}$ is totally unimodular if and only if for each set $R \subseteq\{1, \ldots, n\}$ there is a partition $R=R_{1} \dot{\cup} R_{2}$ such that for each $i \in\{1, \ldots, m\}: \sum_{j \in R_{1}} a_{i j}-\sum_{j \in R_{2}} a_{i j} \in\{-1,0,1\}$.

Proof: " \Rightarrow :" \checkmark
" \Leftarrow :" Assume: For each $R \subseteq\{1, \ldots, n\}$ there is a partition $R=R_{1} \cup R_{2}$ as above.
By induction in k : Every $k \times k$-submatrix of A has determinant $-1,0$, or 1 . $k=1: \checkmark$
Let $k>1$. Let $B=\left(b_{i j}\right)_{i, j \in\{1, \ldots, k\}}$ a submatrix of A. W.I.o.g.: B is regular.
We have proved: $B^{*}:=(\operatorname{det}(B)) B^{-1} \in\{-1,0,1\}^{k \times k}$.
b^{*} : first column of B^{*}. Then, $B b^{*}=\operatorname{det}(B) e_{1}$. Let
$R:=\left\{j \in\{1, \ldots, k\} \mid b_{j}^{*} \neq 0\right\}$. For $i \in\{2, \ldots, k\}$, we have
$0=\left(B b^{*}\right)_{i}=\sum_{j \in R} b_{i j} b_{j}^{*}$, so $\left|\left\{j \in R \mid b_{i j} \neq 0\right\}\right|$ is even.
Let $R=R_{1} \cup R_{2}$ such that $\sum_{j \in R_{1}} b_{i j}-\sum_{j \in R_{2}} b_{i j} \in\{-1,0,1\}$ for all
$i \in\{1, \ldots, k\}$. Thus, for $i \in\{2, \ldots, k\}$, we have: $\sum_{j \in R_{1}} b_{i j}-\sum_{j \in R_{2}} b_{i j}=0$.

The incidence matrix of an undirected graph G is the matrix $A_{G}=\left(a_{v, e}\right)_{\substack{c \in V(G) \\ e \in E(G)}}$ which is defined by:

$$
a_{v, e}= \begin{cases}1, & \text { if } v \in e \\ 0, & \text { if } v \notin e\end{cases}
$$

The incidence matrix of a directed graph G is the matrix
$A_{G}=\left(a_{v, e}\right)_{\substack{v \in V(G) \\ e \in E(G)}}$ which is defined by:

$$
a_{v,(x, y)}= \begin{cases}-1, & \text { if } v=x \\ 1, & \text { if } v=y \\ 0, & \text { if } v \notin\{x, y\}\end{cases}
$$

Theorem:

For every rational polyhedron P, there is a number t with $P^{(t)}=P_{/}$.
Proof: Let $P=\left\{x \in \mathbb{R}^{n} \mid A x \leq b\right\}$ with A integral and b rational. We prove the statement by induction on $n+\operatorname{dim}(P)$. The case $\operatorname{dim}(P)=0$ is trivial.
Case 1: $\operatorname{dim}(P)<n: \checkmark$
Case 2: $\operatorname{dim}(P)=n$:
P is rational $\Rightarrow P_{l}$ is rational $\Rightarrow P_{l}=\left\{x \in \mathbb{R}^{n} \mid C x \leq d\right\}$ with C integral and d rational. If $P_{l}=\emptyset$, we choose $C=A$ and $d=b-A^{\prime} 1_{n}$ where A^{\prime} arises from A by taking the absolute value of each entry.
Let $c^{t} x \leq \delta$ be an inequality in $C x \leq d$.
Claim: There is an $s \in \mathbb{N}$ with $P^{(s)} \subseteq H:=\left\{x \in \mathbb{R}^{n} \mid c^{t} x \leq \delta\right\}$.
Proof of the claim: There is a $\beta \geq \delta$ with $P \subseteq\left\{x \in \mathbb{R}^{n} \mid c^{t} x \leq \beta\right\}$: If
$P_{l}=\emptyset$, this is true by construction. If $P_{l} \neq \emptyset$, it follows from the fact that $c^{t} x$ is bounded over P if and only if it is bounded over P_{l}.

Algorithm 5: Branch-and-Bound Algorithm

Input: A matrix $A \in \mathbb{Q}^{m \times n}$, a vector $b \in \mathbb{Q}^{m}$, and a vector $c \in \mathbb{Q}^{n}$ such that the LP $\max \left\{c^{t} x \mid A x \leq b\right\}$ is feasible and bounded.
Output: A vector $\tilde{x} \in\left\{x \in \mathbb{Z}^{n} \mid A x \leq b\right\}$ maximizing $c^{t} x$ or the message that there is no feasible solution.
$L:=-\infty ; \quad P_{0}:=\left\{x \in \mathbb{R}^{n} \mid A x \leq b\right\} ; \quad \mathcal{K}:=\left\{P_{0}\right\} ;$
while $\mathcal{K} \neq \emptyset$ do
Choose a $P_{j} \in \mathcal{K} ; \quad \mathcal{K}:=\mathcal{K} \backslash\left\{P_{j}\right\} ;$ if $P_{j} \neq \emptyset$ then

Let x^{*} be an optimum solution of $\max \left\{c^{t} x \mid x \in P_{j}\right\}$ and let $c^{*}=c^{t} x^{*}$;
if $c^{*}>L$ then
if $x^{*} \in \mathbb{Z}^{n}$ then
$L:=c^{*}$;
$\tilde{x}:=x^{*} ;$
else
Choose $i \in\{1, \ldots, n\}$ with $x_{i}^{*} \notin \mathbb{Z}$;
$P_{2 j+1}:=\left\{x \in P_{j} \mid x_{i} \leq\left\lfloor x_{i}^{*}\right\rfloor\right\} ;$
$P_{2 j+2}:=\left\{x \in P_{j} \mid x_{i} \geq\left\lceil x_{i}^{*}\right\rceil\right\} ;$
$\mathcal{K}:=\mathcal{K} \cup\left\{P_{2 j+1}\right\} \cup\left\{P_{2 j+2}\right\} ;$

```
if L>-\infty then
    return \tilde{x};
```

else
return "There is no feasible solution";

Branch-and-Bound: Example

max	$-x_{1}+3 x_{2}$
subject to	$-4 x_{1}+6 x_{2}$

Figure : A branch-and-bound example (I).

Figure : A branch-and-bound example (II).

Figure : A branch-and-bound example (III).

