Exercise Set 1

Exercise 1.1. Let G be a graph and M_{1} and M_{2} be two inclusion-wise maximal matchings in G. Prove that $\left|M_{1}\right| \leq 2\left|M_{2}\right|$.

Exercise 1.2. Find an infinite counterexample to Hall's Theorem. More precisely: Find a bipartite graph $G=(A \dot{\cup} B, E)$ with $A \cong \mathbb{N}, B \cong \mathbb{N}$, and $|\Gamma(S)| \geq|S|$ for every $S \subseteq A$ and every $S \subseteq B$ such that G does not contain a perfect matching.
(4 points)
Exercise 1.3. Let $\alpha(G)$ denote the size of a maximum stable set in G, and $\zeta(G)$ the minimum cardinality of an edge cover. Prove:
(a) $\alpha(G)+\tau(G)=|V(G)|$ for any graph G,
(b) $\nu(G)+\zeta(G)=|V(G)|$ for any graph G with no isolated vertices,
(c) $\zeta(G)=\alpha(G)$ for any bipartite graph G with no isolated vertices.

$$
(1+2+1 \text { points })
$$

Exercise 1.4. Let G be a bipartite graph with bipartition $V(G)=A \dot{\cup} B$, $A=\left\{a_{1}, \ldots, a_{k}\right\}, B=\left\{b_{1}, \ldots, b_{k}\right\}$. For any vector $x=\left(x_{e}\right)_{e \in E(G)}$ we define the matrix $M_{G}(x)=\left(m_{i j}^{x}\right)_{1 \leq i, j \leq k}$ by

$$
m_{i j}^{x}:= \begin{cases}x_{e} & \text { if } e=\left\{a_{i}, b_{j}\right\} \in E(G) \\ 0 & \text { otherwise }\end{cases}
$$

Its determinant $\operatorname{det} M_{G}(x)$ is a polynomial in $x=\left(x_{e}\right)_{e \in E(G)}$. Prove that G has a perfect matching if and only if $\operatorname{det} M_{G}(x)$ is not identically zero.
(4 points)

Deadline: October $17^{\text {th }}$, before the lecture. The websites for lecture and exercises can be found at:
http://www.or.uni-bonn.de/lectures/ws19/co_exercises/exercises.html
In case of any questions feel free to contact me at rabenstein@or.uni-bonn.de.

