Exercise Set 5

Exercise 5.1. Let $n \in \mathbb{N}$. A graph with $2 n+1$ vertices is called a double star if it emerges from a star with $n+1$ vertices by replacing every edge $\{v, w\}$ by a vertex $z_{v w}$ and two edges $\left\{v, z_{v w}\right\},\left\{z_{v w}, w\right\}$.
Show that there exists a polynomial time algorithm that, given a cost function c on the edges of the complete graph $K_{2 n+1}$, finds a spanning double star S of $K_{2 n+1}$ that minimizes $c(E(S))$.

Exercise 5.2. Let $k \in \mathbb{N}, k \geq 1$, and suppose G is a k-regular and ($k-1$)-edge-connected graph with an even number of vertices, and with edge weights $c: E(G) \rightarrow \mathbb{R}$. Show that there is a perfect matching M in G with $c(M) \leq$ $(1 / k) \cdot c(E(G))$.
(5 points)
Exercise 5.3. Let $G=(V, E)$ be an undirected graph and Q its fractional perfect matching polytope, which is defined by

$$
Q=\left\{x \in \mathbb{R}^{E}: x_{e} \geq 0(e \in E), \sum_{e \in \delta(v)} x_{e}=1(v \in V)\right\} .
$$

Prove that a vector $x \in Q$ is a vertex of Q if and only if there exist vertex disjoint odd circuits C_{1}, \ldots, C_{k} and a perfect matching M in $G-\left(V\left(C_{1}\right) \cup \ldots \cup V\left(C_{k}\right)\right)$ such that

$$
x_{e}= \begin{cases}\frac{1}{2} & \text { if } e \in E\left(C_{1}\right) \cup \ldots \cup E\left(C_{k}\right), \\ 1 & \text { if } e \in M, \\ 0 & \text { otherwise. }\end{cases}
$$

Exercise 5.4. Given an undirected graph G and disjoint sets $S_{e}, S_{o} \subseteq V(G)$, a partial $\left(S_{e}, S_{o}\right)$-join is a set $J \subseteq E(G)$ such that $|\delta(v) \cap J|$ is even for every $v \in S_{e}$ and odd for every $v \in S_{o}$. (In particular, a T-join is the same as a partial $(V(G) \backslash T, T)$-join.) Consider the Minimum Weight Partial (S_{e}, S_{o})Join Problem: Given an undirected graph G with edge-weights $c: E(G) \rightarrow \mathbb{R}_{\geq 0}$ and disjoint sets $S_{e}, S_{o} \subseteq V(G)$, find a partial $\left(S_{e}, S_{o}\right)$-join of minimum weight, or determine that none exists. Show that this problem can be linearly reduced to the Minimum Weight T-Join Problem.
(5 points)

Deadline: November $14^{\text {th }}$, before the lecture. The websites for lecture and exercises can be found at:
http://www.or.uni-bonn.de/lectures/ws19/co_exercises/exercises.html

In case of any questions feel free to contact me at rabenstein@or.uni-bonn.de

