Exercise Set 12

Exercise 12.1. Let U be a finite set and $f: 2^{U} \rightarrow \mathbb{R}$. Prove that f is submodular if and only if $f(X \cup\{y, z\})-f(X \cup\{y\}) \leq f(X \cup\{z\})-f(X)$ for all $X \subseteq U$ and $y, z \in U$ with $y \neq z$.

Exercise 12.2. Let $0<\epsilon<\frac{1}{2}$ be fixed and $n \in \mathbb{N}$ even with $\epsilon n \in \mathbb{N}$. Let $U=$ $\{1, \ldots, n\}$. For any $C \subset U$ with $2|C|=|U|$ consider the functions $g, f_{C}: 2^{U} \rightarrow \mathbb{Z}_{+}$ defined as follows: For $S \subseteq U$ let $k:=|S \cap C|$ and $l:=|S \backslash C|$, and let $g(S):=$ $|S||U \backslash S|$ and $f_{C}(S):=g(S)$ if $|k-l| \leq \epsilon n$ and $f_{C}(S):=n|S|-4 k l+\epsilon^{2} n^{2}-2 \epsilon n|k-l|$ if $|k-l| \geq \epsilon n$.
(i) Show that the two definitions of $f_{C}(S)$ coincide if $|k-l|=\epsilon n$.
(ii) Show that g and f_{C} are submodular. Hint: Use Exercise 12.1.
(iii) Observe that an algorithm is likely to need exponentially many oracle calls to find out which of these functions (g or f_{C} for some C) is the input.
(iv) Show that the maximum values of g and any f_{C} differ by a factor more than $2(1-2 \epsilon)$.

$$
\left(3+3+\text { Bonus* }^{*}+4 \text { points }\right)
$$

* Bonus points given for (iii) make up for points missing in (i), (ii) and (iv).

Exercise 12.3. Let S be a finite set and let $b_{1}, b_{2}: 2^{S} \mapsto \mathbb{R}$ be two submodular functions. Furthermore, let S^{\prime} and $S^{\prime \prime}$ be two disjooint copies of S. Set $V=S^{\prime} \cup \dot{\cup} S^{\prime \prime}$ and

$$
\mathcal{C}=\left\{U^{\prime}: U \subseteq S\right\} \cup\left\{S^{\prime} \cup U^{\prime \prime}: U \subseteq S\right\}
$$

where U^{\prime} and $U^{\prime \prime}$ denote the two copies of $U \subseteq S$ in S^{\prime} and $S^{\prime \prime}$, and define $b: \mathcal{C} \mapsto$ $\mathbb{R}_{\geq 0}$ by

$$
\begin{array}{rlrl}
b\left(U^{\prime}\right) & :=b_{1}(U) & \text { for } U \subsetneq S, \\
b\left(V \backslash U^{\prime \prime}\right) & :=b_{2}(U) & & \text { for } U \subsetneq S, \tag{1}\\
b\left(S^{\prime}\right) & :=\min \left\{b_{1}(S), b_{2}(S)\right\} . &
\end{array}
$$

(i) Show that \mathcal{C} is a crossing family.
(ii) Show that b is crossing submodular on \mathcal{C}.

Deadline: January 16, before the lecture.

