Exercise Set 12

Exercise 12.1. Let U be a finite set and $f: 2^U \to \mathbb{R}$. Prove that f is submodular if and only if $f(X \cup \{y, z\}) - f(X \cup \{y\}) \le f(X \cup \{z\}) - f(X)$ for all $X \subseteq U$ and $y, z \in U$ with $y \neq z$.

(5 points)

Exercise 12.2. Let $0 < \epsilon < \frac{1}{2}$ be fixed and $n \in \mathbb{N}$ even with $\epsilon n \in \mathbb{N}$. Let $U = \{1, \ldots, n\}$. For any $C \subset U$ with 2|C| = |U| consider the functions $g, f_C \colon 2^U \to \mathbb{Z}_+$ defined as follows: For $S \subseteq U$ let $k := |S \cap C|$ and $l := |S \setminus C|$, and let $g(S) := |S||U \setminus S|$ and $f_C(S) := g(S)$ if $|k-l| \le \epsilon n$ and $f_C(S) := n|S| - 4kl + \epsilon^2 n^2 - 2\epsilon n|k-l|$ if $|k-l| \ge \epsilon n$.

- (i) Show that the two definitions of $f_C(S)$ coincide if $|k l| = \epsilon n$.
- (ii) Show that g and f_C are submodular. *Hint:* Use Exercise 12.1.
- (iii) Observe that an algorithm is likely to need exponentially many oracle calls to find out which of these functions $(g \text{ or } f_C \text{ for some } C)$ is the input.
- (iv) Show that the maximum values of g and any f_C differ by a factor more than $2(1-2\epsilon)$.

 $(3 + 3 + Bonus^* + 4 points)$

* Bonus points given for (iii) make up for points missing in (i), (ii) and (iv).

Exercise 12.3. Let S be a finite set and let $b_1, b_2 : 2^S \mapsto \mathbb{R}$ be two submodular functions. Furthermore, let S' and S'' be two disjoint copies of S. Set $V = S' \cup S''$ and

$$\mathcal{C} = \{U' : U \subseteq S\} \cup \{S' \cup U'' : U \subseteq S\},\$$

where U' and U'' denote the two copies of $U \subseteq S$ in S' and S'', and define $b : \mathcal{C} \mapsto \mathbb{R}_{\geq 0}$ by

$$b(U') := b_1(U) \qquad \text{for } U \subsetneq S, b(V \setminus U'') := b_2(U) \qquad \text{for } U \subsetneq S, b(S') := \min\{b_1(S), b_2(S)\}.$$
(1)

- (i) Show that \mathcal{C} is a crossing family.
- (ii) Show that b is crossing submodular on C.

(2+3 points)

Deadline: January 16, before the lecture.