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Abstract VLSI design is probably the most fascinating application area of com-
binatorial optimization. Virtually all classical combinatorial optimization problems,
and many new ones, occur naturally as subtasks. Due to the rapid technological
development and major theoretical advances the mathematics of VLSI design has
changed significantly over the last ten to twenty years. This survey paper gives an
up-to-date account on the key problems in layout and timing closure. It also presents
the main mathematical ideas used in a set of algorithms called BonnTools, which
are used to design many of the most complex integrated circuits in industry.
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1. Introduction

The ever increasing abundance, role and importance of computers in every aspect of
our lives is clearly a proof of a tremendous scientific and cultural development - if not
revolution. When thinking about the conditions which made this development possible
most people will probably first think mainly of technological aspects such as the invention
and perfection of transistor technology, the possibility to fabricate smaller and smaller
physical structures consisting of only a few atoms by now, and the extremely delicate, ex-
pensive yet profitable manufacturing processes delivering to the markets new generations
of chips in huge quantities every couple of months. From this point of view the increase
of complexity might be credited mainly to the skills of the involved engineering sciences
and to the verve of the associated economic interests.

It is hardly conceived how important mathematics and especially mathematical
optimization is for all parts of VLSI technology. Clearly, everybody will acknowledge that
the physics of semiconductor material relies on mathematics and that, considered from a
very abstract level, computer chips are nothing but intricate machines for the calculation
of complex Boolean functions. Nevertheless, the role of mathematics is far from being
fully described with these comments. Especially the steps of the design of a VLSI chip
preceding its actual physical realization involve more and more mathematics. Many of the
involved tasks which were done by the hands of experienced engineers until one or two
decades ago have become so complicated and challenging that they can only be solved
with highly sophisticated algorithms using specialized mathematics.

While the costs of these design and planning issues are minor compared to the
investments necessary to migrate to a new technology or even to build a single new
chip factory, they offer large potentials for improvement and optimization. This and
the fact that the arising optimization problems, their constraints and objectives, can be
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captured far more exactly in mathematical terms than many other problems arising in
practical applications, make VLSI design one of the most appealing, fruitful and successful
application areas of mathematics.

The Research Institute for Discrete Mathematics at the University of Bonn has been
working on problems arising in VLSI design for more than twenty years. Since 1987
there exists an intensive and growing cooperation with IBM, in the course of which more
than one thousand chips of IBM and its customers (microprocessor series, application
specific integrated circuits (ASICs), complex system-on-a-chip designs (SoC)) have been
designed with the so-called BonnTools. In 2005 the cooperation was extended to include
Magma Design Automation. Some BonnTools are now also part of Magma’s products
and are used by its customers.

The term BonnTools [51] refers to complete software solutions which have been
developed at the institute in Bonn and are being used in many design centers all over the
world. The distinguishing feature of BonnTools is their innovative mathematics. With its
expertise in combinatorial optimization [50,52,26] the institute was able to develop some
of the best algorithms for the main VLSI design tasks: placement, timing optimization,
distribution of the clocking signals, and routing. Almost all classical combinatorial
optimization problems such as shortest paths, minimum spanning trees, maximum flows,
minimum cost flows, facility location and so forth arise at some stage in VLSI design, and
the efficient algorithms known in the literature for these problems can be used to solve
various subproblems in the design flow. Nevertheless, many problems do not fit into these
standard patterns and need new customized algorithms. Many such algorithms have been
developed by our group in Bonn and are now part of the IBM design flow.

In this paper we survey the main mathematical components of BonnTools. It is a common
feature of these components that they try to restrict the optimization space, i.e. the set of
feasible solutions which the algorithms can generate, as little as possible. This corresponds
to what is typically called a flat design style in contrast to a hierarchical design style. The
latter simplifies a problem by splitting it into several smaller problems and restricting the
solution space by additional constraints which make sure that the partial solutions of the
smaller problems properly combine to a solution of the entire problem. Clearly, this can
seriously deteriorate the quality of the generated solution.

While imposing as few unnecessary restrictions to the problems as possible, the
BonnTools algorithms are always considered with respect to their theoretical as well
as practical performance. Wherever possible, theoretical performance guarantees and
rigorous mathematical proofs are established. The running time and practical behavior of
the implemented algorithms is always a main concern, because the code is used for real
practical applications.

The beauty and curse of applying mathematics to VLSI design is that problems are
never solved once for good. By new technological challenges, new orders of magnitude in
instance sizes, and new foci on objectives like the reduction of power consumption for
portable devices or the increase of the productivity of the factories, new mathematical
problems arise constantly and classical problems require new solutions. This makes this
field most interesting not only for engineers, but also for mathematicians. See [53] for
some interesting open problems.
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The paper is organized as follows. In the rest of this introduction we explain some ba-
sic terminology of VLSI technology and design. Then, in Section 2, we describe our
placement tool BonnPlace and its key algorithmic ingredients. The placement problem
is solved in two phases: global and detailed placement. Global placement uses continu-
ous quadratic optimization and a new combinatorial partition algorithm (multisection).
Detailed placement is based on a sophisticated minimum cost flow formulation.

In Section 3 we proceed to timing optimization, where we concentrate on the three
most important topics: repeater trees, logic restructuring, and choosing physical realiza-
tions of gates (sizing and Vt-assignment). These are the main components of BonnOpt,
and each uses new mathematical theory.

As described in Section 4, BonnCycleOpt further optimizes the timing and robustness
by enhanced clock skew scheduling. It computes a time interval for each clock input of
a memory element. BonnClock, our tool for clock tree synthesis, constructs clock trees
meeting these time constraints and minimizing power consumption.

Finally, Section 5 is devoted to routing. Our router, BonnRoute, contains the first
global router that directly considers timing, power consumption, and manufacturing yield,
and is provably close to optimal. It is based on a new, faster algorithm for the min-max
resource sharing problem. The unique feature of our detailed router is an extremely fast
implementation of Dijkstra’s shortest path algorithm, allowing us to find millions of
shortest paths even for long-distance connections in very reasonable time.

1.1. A brief guided tour through VLSI technology

VLSI — very large-scale integrated — chips are by far the most complex structures
invented and designed by man. They can be classified into two categories: memory chips
and logic chips. In a memory chip transistors are packed into a rectangular array. For
the design of such chips no advanced mathematics is needed since the individual storage
elements (transistors) have to be arranged like a matrix. Logic chips have a very individual
design where mathematical methods — as explained below — are essential.

Integrated circuits are around since 1959. Jack Kilby of Texas Instruments was one
of its inventors. Since then the degree of integration grew exponentially. While the first
integrated circuits had only a few transistors on a silicon chip, modern chips can have up
to one million transistors per mm2, i.e. a chip of 2 cm2 total size can carry up to 2 billion
transistors. The famous Moore’s law, a rule of thumb proposed by Gordon Moore in 1965
[61] and updated in 1975, states that the number of transistors per chip doubles every 24
months (see Figure 1).
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Figure 3. Trend of cost reduction in microelectronics

This empirical observation is true ever since. As the size of a chip remains almost
constant (between 1 and 4 cm2), the minimum feature size on a chip has to halve about
every 4 years. See Figure 2 for the development of feature sizes on leading-edge computer
chips.

It is frequently asked how this extremely rapid development of chip technology will
continue. Technological as well as physical limitations have to be considered. However,
technological limitations could be overruled so far by more sophisticated manufacturing
approaches. Thus, the quite often predicted end of silicon technology is not yet in sight.
Certainly, there are genuine physical limitations. Today less than 100 000 electrons are
used to represent one bit, the absolute minimum is one. The switching energy of a single
transistor amounts nowadays to 10 000 attojoule (atto = 10−18). The lower bound derived
from quantum physics is 0.000001 attojoule. Some experts believe that the limit of feature
size is around 5 nanometers (today 32 nanometers) and they predict that such dimensions
will be possible between 2020 and 2025. In any case, silicon technology will be alive
for some further decades. There is some interesting (theoretical) research on quantum
computing. However, nobody knows when such ideas can be used in hardware and for
mass production.

The extreme dynamics of chip technology can be demonstrated by cost reduction
over time. In Figure 3 the trend of cost reduction is shown from 1960 on. Green dots
demonstrate the cost of 1 megabit of memory (DRAM), red triangles the cost of 1 million
transistors in silicon technology, blue squares the cost of 1 MIPS (million instructions
per second) computing power of Intel X86 processors and red diamonds show the cost
of 1 MIPS for Texas Instruments processors. All these developments indicate an average
reduction of cost of 35 % per year. There is no other industry or technology known with
such huge figures over a period of 50 years.
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Figure 4. Schematic cross-sectional view of a chip
Figure 5. Microscopic view of a chip with aluminum
wiring

Let us give some insight into the real structure of a chip. Figure 4 shows a schematic
of a chip and its different layers. This diagram refers to an older technology with only
three layers of metal interconnect. Modern chips have up to 12 layers for wiring signal
nets between the circuits. The cross-sectional view reveals the different layers generated
on the chip by lithographic processes. By doping with foreign atoms so-called wells
(N-wells and P-wells) are generated on the silicon substrate of the wafer. According to
the doping the regions have either a surplus (emitter zones) or a demand (collector zones)
of electrons. The space between these regions is controlled by a gate. The gates can be
charged with different electrical potentials. This will effect that the space underneath the
gate is blocked or that electrons can move, which means that the transistor as an electronic
switch is either closed or open.

Figure 5 displays the structure of a real chip, visualized by a scanning tunneling
microscope. We can identify emitter, collector and gates with their connector pins and
some horizontal part of the connecting wires. This picture shows an older technology
with aluminum as metal for the interconnect. Figure 6 shows the same technology. Each
layer contains horizontal and/or vertical wires, and adjacent layers are separated by an
insulation medium. One can also see vias, i.e. the connections between different metal
layers. Vias can be considered as little holes in the insulating layer, filled with metal. Since
approximately ten years ago aluminum has been replaced by copper for the interconnect
wiring (Figure 7). This permits faster signal transmission.

1.2. The VLSI design problem: a high-level view

Although all functions of a chip are composed of transistors and their interconnect, it is
not useful to work on this level directly. Instead one uses a library for the design of a
chip, where each element of the library represents a pre-designed configuration of several
transistors, implementing a specific function. The elements of the library are called books.

Each book is a blueprint of a (smaller) integrated circuit itself: it contains a list
of transistors and their layout, including internal interconnect. Most importantly, each
book has at least one input and at least one output. Most books implement an elementary
Boolean function, such as and, or, invert, xor, etc. For example, the output of an
and is charged (logical 1) if both inputs are charged, and discharged (logical 0) otherwise.
Other books implement registers.
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Figure 6. Layers of a chip visualized by electron microscopy

Figure 7. Microscopic view
of a chip with copper-wiring
(90 nm technology)

Such simple cells are called standard cells. Their blueprints have unit height, because
on the chip these cells have to be aligned vertically into so called cell rows. Thereby,
the power supply pins in each cell row are also aligned and power supply wires can be
arranged in straight horizontal lines across the chip.

Finally, there are complicated (and larger) books that represent complex structures like
memory arrays, adders, or even complete microprocessors that have been designed earlier
and are re-used several times. With each book there is also pre-computed information
about its timing behavior. A simple view is that we know how long it takes that a change
of an input bit is propagated to each output (if it has any effect).

A chip can contain many instances of the same book. These instances are called
circuits or cells. For example, a logic chip can contain millions of inverters, but a typical
library contains only a few dozen books that are different implementations of the invert
function. These books have different layouts and different timing behavior, although they
all implement the same function. Each circuit has a set of pins, and each of these pins
corresponds to an input or an output of the corresponding book.

The most important part of an instance of the VLSI design problem is a netlist, which
consists of a set of circuits, their pins, a set of additional pins that are inputs or outputs
of the chip itself (I/O ports), and a set of nets, which are pairwise disjoint sets of pins.
The layout problem consists of placing these circuits within the chip area, without any
overlaps, and connecting the pins of each net by wires, such that wires of different nets
are well separated from each other. Placement (Section 2) is a two-dimensional problem
(it is currently not possible to put transistors on top of each other), but routing (Section 5)
is a three-dimensional problem as there are several (currently up to 12) layers that can
be used for wiring. Of course there are additional rules for placement and routing that
must be followed. Some of these are important for the nature of the problem and will be
discussed later on, others are merely technical but cause no algorithmic problems; these
will not be discussed in this paper.

Layout (placement and routing) is not the only interesting design task. Usually one
of the main challenges is to meet timing constraints. In particular, all signals must be
propagated in time not only through a single circuit, but also through long paths. In
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a simple setting, we have an arrival time at each input of the chip, and also a latest
feasible arrival time at each output. Moreover, each register is controlled by a periodic
clock signal, and the signal to be stored in the register must arrive in time, and can then
be used for further computations. To make this possible, one can replace parts of the
netlist equivalently (the new parts must compute the same Boolean function as the old
ones). While the task to implement a given Boolean function optimally by a netlist (logic
synthesis) is extremely hard and more or less completely unsolved, we concentrate on
replacing smaller parts of the netlist or restrict to basic operations (Section 3). Another
possibility to speed up timing is to schedule the clock signals for all registers (Section 4),
thereby trading timing constraints of paths. This is one of the few tasks which we can
solve optimally, even for the largest VLSI instances.

2. Placement

A chip is composed of basic elements, called cells, circuits, boxes, or modules. They
usually have a rectangular shape, contain several transistors and internal connections, and
have at least two pins (in addition to power supply). The pins have to be connected to
certain pins of other cells by wires according to the netlist. A net is simply a set of pins
that have to be connected, and the netlist is the set of all nets.

The basic placement task is to place the cells legally — without overlaps — in the
chip area. A feasible placement determines an instance of the routing problem, which
consists of implementing all nets by wires. The quality of a placement depends on the
quality of a wiring that can be achieved for this instance.

For several reasons it is usually good if the wire length (the total length of the wires
connecting the pins of a net) is as short as possible. The power consumption of a chip
grows with the length of the interconnect wires, as higher electrical capacitances have
to be charged and discharged. For the same reason signal delays increase with the wire
length. Critical nets should be kept particularly short.

2.1. Estimating net length

An important question is how to measure (or estimate) wire length without actually routing
the chip. First note that nets are wired in different layers with alternating orthogonal
preference direction. Therefore the `1-metric is the right metric for wire length. An exact
wire length computation would require to find disjoint sets of wires for all nets (vertex-
disjoint Steiner trees), which is an NP-hard problem. This even holds for the simplified
problem of estimating the length of each net by a shortest two-dimensional rectilinear
Steiner tree connecting the pins, ignoring disjointness and all routing constraints [31].

A simple and widely used estimate for the net length of a finite set V ⊂ R2 of pin
coordinates (also called terminals) is the bounding box model BB, which is defined as half
the perimeter of the bounding box:

BB(V ) = max
(x,y)∈V

x− min
(x,y)∈V

x+ max
(x,y)∈V

y − min
(x,y)∈V

y

The bounding box net length is a lower bound for the minimum Steiner tree length
and computable in linear time. It is widely used for benchmarking and often also as an
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Table 1. Worst-case ratios of major net models. Entry (r, c) is sup
c(N)
r(N)

over all point sets N with |N | = n.
Here c(N) denotes a net length in the model of column c and r(N) in the model of row r.

objective function in placement. Other useful measurements are the clique model CLIQUE

which considers all pin to pin connections of a net

CLIQUE(V ) =
1

|V | − 1

∑
{(x,y),(x′,y′)}∈(V2)

(|x− x′|+ |y − y′|),

and the star model which is the minimum length of a star connecting all sinks to an
optimally placed auxiliary point. It can be shown that the clique model is the best topology-
independent approximation of the minimum Steiner length [15]. Therefore we use it in
our optimization framework, which we will present in Section 2.3.

Table 1 gives an overview on major net models and their mutual worst-case ratios.
They were proved in [15], [42], and [75].

2.2. The placement problem

We now define the Simplified Placement Problem. It is called “simplified“ as side con-
straints such as routability, timing constraints, decoupling capacitor densities, or nwell
filling are neglected 1. Moreover, wire length is estimated by the bounding box model.
Nevertheless this formulation is very relevant in practice. Net weights are incorporated to
reflect timing criticalities and can be interpreted as Lagrange multipliers corresponding to
delay constraints. Other constraints can be dealt with by adjusting densities.

1Readers who are not acquainted with these terms might just think of additional constraints.
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SIMPLIFIED PLACEMENT PROBLEM

Instance:
• a rectangular chip area [xmin, xmax]× [ymin, ymax]
• a set of rectangular blockages
• a finite set C of (rectangular) cells
• a finite set P of pins, and a partition N of P into nets
• a weight w(N) > 0 for each net N ∈ N
• an assignment γ : P → C ∪ {�} of the pins to cells

[pins p with γ(p) = � are fixed; we set x(�) := y(�) := 0]
• offsets x(p), y(p) ∈ R of each pin p ∈ P

Task: Find a position (x(c), y(c)) ∈ R2 of each cell c ∈ C such that

• each cell is contained in the chip area,
• no cell overlaps with another cell or a blockage,

and the weighted net length∑
N∈N

w(N) BB ({(x(γ(p)) + x(p), y(γ(p)) + y(p)) | p ∈ N})

is minimum.

A special case of the Simplified Placement Problem is the QUADRATIC ASSIGNMENT

PROBLEM (QAP), which is known to be one of the hardest combinatorial optimization
problems in theory and practice (for example, it has no constant-factor approximation
algorithm unless P = NP [72]).

Placement typically splits into global and detailed placement. Global placement ends
with an infeasible placement, but with overlaps that can be removed by local moves: there
is no large region that contains too many objects. The main objective of global placement
is to minimize the weighted net length. Detailed placement, or legalization, takes the
global placement as input and legalizes it by making only local changes. Here the objective
is to ensure the previously neglected constraints while minimizing the perturbation of the
global placement.

The global placement algorithm developed in [92,96,12,13] has two major compo-
nents: quadratic placement and multisection.

At each stage the chip area [xmin, xmax]× [ymin, ymax] is partitioned by coordinates
xmin = x0 ≤ x1 ≤ x2 ≤ . . . ≤ xn−1 ≤ xn = xmax and ymin = y0 ≤ y1 ≤ y2 ≤
. . . ≤ ym−1 ≤ ym = ymax into an array of regions Rij = [xi−1, xi] × [yj−1, yj ] for
i = 1, . . . , n and j = 1, . . . ,m. Initially, n = m = 1. Each movable object is assigned to
one region (cf. Figure 8).

In the course of global placement, columns and rows of this array, and thus the
regions, are subdivided, and movable objects are assigned to subregions. After global
placement, these rows correspond to cell rows with the height of standard cells, and the
columns are small enough so that no region contains more than a few dozen movable
objects. On a typical chip in 32 nm technology we have, depending on the library and die
size, about 10 000 rows and 2 000 columns.
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Figure 8. The initial four levels of the global placement with 1, 4, 16, and 64 regions. Colors indicate the
assignment of the movable objects to the regions. The large grey objects are fixed and serve as blockages.

2.3. Quadratic placement

Quadratic placement means solving

min
∑
N∈N

w(N)

|N | − 1

∑
p,q∈N

(Xp,q + Yp,q),

where N is the set of nets, each net N is a set of pins, |N | is its cardinality (which we
assume to be at least two), and w(N) is the weight of the net, which can be any positive
number. For two pins p and q of the same net, Xp,q is the function

(i) (x(c) + x(p)− x(d)− x(q))
2 if p belongs to movable object c with offset x(p),

q belongs to movable object d with offset x(q), and c and d are assigned to regions
in the same column.
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Figure 9. Minimizing the linear bounding box net length (left) gives hardly any information on relative
positions compared to minimizing quadratic net length (right). As no disjointness constraints were considered
yet, many cells share their position, especially on the left-hand side.

(ii) (x(c) + x(p)− v)
2 if p belongs to movable object c with offset x(p), c is

assigned to region Ri,j , q is fixed at a position with x-coordinate u, and
v = max{xi−1,min{xi, u}}.

(iii) (x(c) + x(p)− xi)2 + (x(d) + x(q)− xi′−1)
2 if p belongs to movable object

c with offset x(p), q belongs to movable object d with offset x(q), c is assigned to
region Ri,j , d is assigned to region Ri′,j′ , and i < i′.

(iv) 0 if both p and q are fixed.

Yp,q is defined analogously, but with respect to y-coordinates, and with rows playing the
role of columns.

In its simplest form, with n = m = 1, quadratic placement gives coordinates that
optimize the weighted sum of squares of Euclidean distances of pin-to-pin connections (cf.
the top left part of Figure 8). Replacing multi-terminal nets by cliques (i.e. considering a
connection between p and q for all p, q ∈ N ) is the best one can do as CLIQUE is the best
topology-independent net model (see Section 2.1). Dividing the weight of a net by |N |−1
is necessary to prevent large nets from dominating the objective function. Splitting nets
along cut coordinates as in (ii) and (iii), first proposed in [92], partially linearizes the
objective function and reflects the fact that long nets will be buffered later.

There are several reasons for optimizing this quadratic objective function. Firstly,
delay along unbuffered wires grows quadratically with the length. Secondly, quadratic
placement yields unique positions for most movable objects, allowing one to deduce much
more information than the solution to a linear objective function would yield (see Figure
9). Thirdly, as shown in [98], quadratic placement is stable, i.e. almost invariant to small
netlist changes. Finally, quadratic placement can be solved extremely fast.

To compute a quadratic placement, first observe that the two independent quadratic
forms, with respect to x- and y-coordinates, can be solved independently in parallel.
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Moreover, each row and column can be considered separately and in parallel. Each
quadratic program is solved by the conjugate gradient method with incomplete Cholesky
pre-conditioning. The running time depends on the number of variables, i.e. the number
of movable objects, and the number of nonzero entries in the matrix, i.e. the number of
pairs of movable objects that are connected. As large nets result in a quadratic number
of connections, we replace large cliques, i.e. connections among large sets of pins in the
same net that belong to movable objects assigned to regions in the same column (or row
when considering y-coordinates), equivalently by stars, introducing a new variable for the
center of a star. This was proposed in [92] and [12].

The running time to obtain sufficient accuracy grows slightly faster than linearly.
There are linear-time multigrid solvers, but they do not seem to be faster in practice. We
can compute a quadratic placement within at most a few minutes for 5 million movable
objects. This is for the unpartitioned case n = m = 1; the problem becomes easier by
partitioning, even when sequential running time is considered.

It is probably not possible to add linear inequality constraints to the quadratic program
without a significant impact on the running time. However, linear equality constraints
can be added easily, as was shown by [47]. Before partitioning, we analyze the quadratic
program and add center-of-gravity constraints to those regions whose movable objects
are not sufficiently spread. As the positions are the only information considered by
partitioning, this is necessary to avoid random decisions. See also [18] for a survey on
analytical placement.

2.4. Multisection

Quadratic placement usually has many overlaps which cannot be removed locally. Before
legalization we have to ensure that no large region is overloaded. For this global placement
has a second main ingredient, which we call multisection.

The basic idea is to partition a region and assign each movable object to a subregion.
While capacity constraints have to be observed, the total movement should be minimized,
i.e. the positions of the quadratic placement should be changed as little as possible. More
precisely we have the following problem.

MULTISECTION PROBLEM

Instance:
• Finite sets C (cells) and R (regions),
• sizes size : C → R≥0 ,
• capacities cap : R→ R≥0 and
• costs d : C ×R→ R .

Task: Find an assignment g : C → R with∑
c∈C:g(c)=r size(c) ≤ cap(r) (for all r ∈ R)

minimizing the total cost
∑
c∈C d(c, r).

This partitioning strategy has been proposed in [92] for k = 4 and `1-distances as
costs as the QUADRISECTION PROBLEM, and was then generalized to arbitrary k and
costs in [12]. It is a generalization of the ASSIGNMENT PROBLEM where the sizes and
capacities are all 1. To decide whether a solution of the MULTISECTION PROBLEM exists
is NP-complete (even for |R| = 2) since it contains the decision problem PARTITION. For
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our purpose it suffices to solve the fractional relaxation which is known as the HITCHCOCK

TRANSPORTATION PROBLEM. Here each c ∈ C can be assigned fractionally to several
regions:

HITCHCOCK TRANSPORTATION PROBLEM

Instance:
• Finite sets C (cells) and R (regions),
• sizes size : C → R≥0 ,
• capacities cap : R→ R≥0 and
• costs d : C ×R→ R .

Task: Find a fractional assignment g : C ×R→ R+ with∑
r∈R g(c, r)=size(c) for all c ∈ C and∑
c∈C g(c, r) ≤ cap(r) for all r ∈ R minimizing∑
c∈C

∑
r∈R g(c, r)d(c, r).

A nice characteristic of the fractional problem is, that one can easily find an optimum
solution with only a few fractionally assigned cells. Most cells can be assigned to a unique
region as shown by Vygen [96]:

Proposition 1. From any optimum solution g to the HITCHCOCK PROBLEM we can
obtain another optimum solution g? in O(|C||R|2) time that is integral up to |R| − 1
cells.

Proof: W.l.o.g. let R = {1, . . . , k}. Let g be an optimum solution. Define Φ(g) :=
|{(c, r) | c ∈ C, r ∈ R, g(c, r) > 0}|.

Let G be the undirected graph with vertex set R. For every cell c that is not assigned
integrally to one region, add an edge between the region i with least i and the region j
with largest j that contain parts of c. (G may have parallel edges.) If |E(G)| ≤ k − 1, we
are done.

Otherwise G contains a circuit ({v1, . . . , vj , vj+1 = v1}, {{vi, vi+1} | i =
1, . . . , j}). For each i ∈ {1, . . . , j} there is a ci ∈ C with 0 < g(ci, vi) < size(ci) and
0 < g(ci, vi+1) < size(ci) (here vj+1 := v1). c1, . . . , cj are pairwise distinct. Hence for
a sufficiently small ε > 0 we have that g′ and g′′ are feasible fractional partitions, where
g′(ci, vi) := g(ci, vi) − ε, g′(ci, vi+1) := g(ci, vi+1) + ε, g′′(ci, vi) := g(ci, vi) + ε,
g′′(ci, vi+1) := g(ci, vi+1) − ε (i = 1, . . . , j) and g′(c, r) := g′′(c, r) := g(c, r) for
c ∈ C \ {c1, . . . , cj} and r ∈ R.

The arithmetic mean of the objective function values of g′ and g′′ is precisely that of
g, implying that g′ and g′′ are also optimum. If we choose ε as large as possible, Φ(g′) or
Φ(g′′) is strictly smaller than Φ(g).

After |C||R| iterations Φ must be zero. Note that each iterations can be performed in
O(|R|) time, including the update of G.

The Hitchcock transportation problem can be modeled as a minimum cost flow
problem as Figure 10 indicates. The fastest standard minimum cost flow algorithm runs in
O(n log n(n log n+ kn)) [67]. However, super-quadratic running times are too slow for
VLSI instances. For the quadrisection case, where k = 4 and d is the `1-distance, there is a
linear-time algorithm by Vygen [96]. The algorithm is quite complicated but very efficient
in practice. Recently, Brenner [9] proposed an O(nk2(log n+ k log k))-algorithm for the
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Figure 10. The Hitchcock transportation problem is a relaxation of the multisection problem. All arcs are
oriented from left to right and are uncapacitated. The supply vertices on the left correspond to movable objects
and have supply size(c1), . . . , size(cn). The demand vertices on the right correspond to subregions and have
demand cap(r1), . . . , cap(rk). Arc costs are d(ci, rj) for all 1 ≤ i ≤ n, 1 ≤ j ≤ k. Note that k � n in this
application.

general case. This is extremely fast also in practice and has replaced the quadrisection
algorithm of [96] in BonnPlace.

The idea is based on the well-known successive shortest paths algorithm (cf. [52]). Let
the cells C = {c1, c2, . . . , cn} be sorted by size size(c1) ≥ size(c2) ≥ · · · ≥ size(cn).
We assign the objects in this order. A key observation is that for doing this optimally we
need to re-assign only O(k2) previously assigned objects and thus can apply a minimum
cost flow algorithm in a digraph whose size depends on k only. Note that k is less than
10 in all our applications, while n can be in the millions. The relevant results for our
purposes are summarized in following theorem ([96],[9]).

Theorem 2. The Hitchcock transportation problem with |R| = 4 and `1-distance can
be solved in O(n) time. The general case can be solved in O(nk2(log n+ k log k)) time,
where n = |C| and k = |R|.

Figure 11 shows a multisection example where the movable objects are assigned
optimally to nine regions.

2.5. Overall global placement and macro placement

With these two components, quadratic placement and multisection, the global placement
can be described. Each level begins with a quadratic placement. Before subdividing the
array of regions further, we fix macro cells that are too large to be assigned completely to
a subregion. Macro placement uses minimum cost flow, branch-and-bound, and greedy
techniques. We briefly describe its main component.

Assume that we want to place rectangular macros numbered c1, . . . , cn, with widths
w1, . . . , wn and heights h1, . . . , hn within an area [xmin, xmax]× [ymin, ymax]. The objec-
tive function is weighted bounding box netlength. If we fix a relation rij ∈ {W,S,E,N}
for each 1 ≤ i < j ≤ n, then this can be written as linear program:

min
∑
N∈N

w(N)
(
xN − xN + yN − yN

)
(1)
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Figure 11. An example for multisection: objects are assigned to 3 × 3 subregions. The colors reflect the
assignment: the red objects are assigned to the top left region, the yellow ones to the top middle region, and so
on. This assignment is optimal with respect to total `1-distance.

subject to

xi ≥ xmin for i = 1, . . . , n
xi + wi ≤ xmax for i = 1, . . . , n

yi ≥ ymin for i = 1, . . . , n
yi + hi ≤ ymax for i = 1, . . . , n
xi + wi ≤ xj for 1 ≤ i < j ≤ n with rij = W
xj + wj ≤ xi for 1 ≤ i < j ≤ n with rij = E
yi + hi ≤ yj for 1 ≤ i < j ≤ n with rij = S
yj + hj ≤ yi for 1 ≤ i < j ≤ n with rij = N

xi + x(p) ≥ xN for i = 1, . . . , n and p ∈ P with γ(p) = ci
x(p) ≥ xN for p ∈ P with γ(p) = 2

xi + x(p) ≤ xN for i = 1, . . . , n and p ∈ P with γ(p) = ci
x(p) ≤ xN for p ∈ P with γ(p) = 2

yi + y(p) ≥ y
N

for i = 1, . . . , n and p ∈ P with γ(p) = ci
y(p) ≥ y

N
for p ∈ P with γ(p) = 2

yi + y(p) ≤ yN for i = 1, . . . , n and p ∈ P with γ(p) = ci
y(p) ≤ yN for p ∈ P with γ(p) = 2

(2)
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This is the dual of an uncapacitated minimum cost flow problem. Hence we can find
an optimum solution to (2) in O((n+m)(p+ n2 +m logm) log(n+m)) time, where
n = |C|, m = |N |, and p = |P |. Instead of enumerating all 2n(n−1) possibilities for r,
it suffices to enumerate all pairs of permutations π, ρ on {1, . . . , n}. For 1 ≤ i < j ≤ n
we then define rij := W if i precedes j in π and ρ, rij := E if j precedes i in π and
ρ, rij := S if i precedes j in π and j precedes i in ρ, and rij := N if j precedes i in π
and i precedes j in ρ. One of the (n!)2 choices will lead to an optimum placement. This
sequence-pair representation is due to [43] and [66]. In practice, however, a branch-and-
bound approach is faster; Hougardy [39] solves instances up to approximately 20 circuits
optimally. This is also used as part of a post-optimization heuristic.

However, interaction of small and large blocks in placement is still not fully under-
stood [17,86], and placing large macros in practice often requires a significant amount of
manual interaction.

After partitioning the array of regions, the movable objects are assigned to the
resulting subregions. Several strategies are applied (see [13] and [89] for details), but the
core subroutine in each case is the multisection described above. An important further
step is repartitioning, where 2× 2 or even 3× 3 sub-arrays of regions are considered and
all their movable objects are reassigned to these regions, essentially by computing a local
quadratic placement followed by multisection.

There are further components which reduce routing congestion [11], deal with timing
and resistance constraints, and handle other constraints like user-defined bounds on
coordinates or distances of some objects. Global placement ends when the rows correspond
to standard cell heights. Typically there are fewer columns than rows as most movable
objects are wider than high. Therefore 2× 3 partitioning is often used in the late stages of
global placement.

2.6. Detailed placement

Detailed placement, or legalization, considers standard cells only; all others are fixed
beforehand. The task is to place the standard cells legally without changing the (illegal)
input placement too much. Detailed placement does not only arise as a finishing step
during the overall placement flow, but also in interaction with timing optimization and
clock tree insertion. These steps add, remove or resize cells and thus require another
legalization of the placement that has become illegal.

Due to technology constraints cells cannot be placed with arbitrary y-coordinates.
Instead, they have to be arranged in cell rows. Cells that are higher than a cell row must be
fixed before detailed placement. Thus we can assume unit height and have the following
problem formulation:
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PLACEMENT LEGALIZATION PROBLEM

Instance:
• A rectangular chip area [xmin, xmax]× [ymin, ymax],
• a set of rectangular blockages,
• a set C of rectangular cells with unit height,
• An equidistant subdivision yR0 = ymin ≤ yR1 ≤ · · · ≤ yRnR = ymax of

[ymin, ymax] into cell rows
• a width w(c) and a position (x(c), y(c)) ∈ R2 of each cell c ∈ C.

Task: Find new positions (x′(c), y′(c)) ∈ Z2 of the cells such that

• each cell is contained in the chip area,
• each cell snaps into a cell row

(its y-coordinate is a cell row coordinate),
• no two cells overlap,
• no cell overlaps with any blockage,

and
∑
c∈C

((x(c)− x′(c))2 + (y(c)− y′(c))2) is minimum.

It is quite natural to model the legalization problem as a minimum cost flow problem,
where flow goes from supply regions with too many objects to demand regions with extra
space [93]. Brenner and Vygen [16] refined this approach. We describe this enhanced
legalization algorithm in the following.

It consists of three phases. A zone is defined as a maximal part of a cell row that is
not blocked by any fixed objects, i.e. can be used for legalization.

The first phase guarantees that no zone contains more cells than fit into it. The second
phase places the cells legally within each zone in the given order. When minimizing
quadratic movement, this can be done optimally in linear time by Algorithm 1, as shown
in [16] (see also [44], [14], and [90]). The algorithm gets as inputs a zone [xmin, xmax],
coordinates x1, . . . , xn ∈ R and widths w1, . . . , wn > 0 with

∑n
i=1 wi ≤ xmax − xmin,

and legalizes the circuits within [xmin, xmax] in the given order. As all circuits stay within
one zone, we do not consider y-coordinates. It places the circuits from left to right, each
optimally and as far to the left as possible. If a circuit cannot be placed optimally, it is
merged with its predecessor.

Theorem 3. Algorithm 1 runs in linear time and computes coordinates x′1, . . . , x
′
n with

xmin ≤ x′1, x′i + wi ≤ x′i+1 (i = 1, . . . , n − 1), and xn + wn ≤ xmax, such that∑n
i=1(xi − x′i)2 is minimum.

Proof: Each iteration increases i by one or decreases |L| and i by one. As 1 ≤ i ≤
|L| ≤ n+ 1, the total number of iterations is at most 2n. Each takes constant time.

To prove correctness, the main observation is that we can merge circuits without
losing optimality. So if we merge circuits h and i, we write L′ := {j ∈ L | j < i} and
claim that there exists an optimum solution (x∗j )j∈L′∪{i} of the subproblem defined by
(fj ,Wj)j∈L′∪{i} where x∗h +Wh = x∗i .

Let (x∗j )j∈L′∪{i} be an optimum solution of this subproblem. If x∗i − Wh ≤
arg min fh, then x∗h can be set to x∗i −Wh without increasing fh(x∗h).
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So suppose that x∗i > x∗h + Wh and x∗i > arg min fh + Wh. Then x∗i >
max{xmin, arg min fh} + Wh ≥ x′h + Wh > min{xmax −Wi, arg min fi}, a contra-
diction as decreasing x∗i would reduce fi(x∗i ).

1: Let fi : x 7→ (x− xi)2.
2: x′0 ← xmin, W0 ← 0, Wi ← wi for i = 1, . . . , n.
3: Let L be the list consisting of 0, 1, . . . , n, n+ 1.
4: i← 1.
5: while i < n+ 1 do
6: Let h be the predecessor and j the successor of i in L.
7: if h = 0 or x′h +Wh ≤ min{xmax −Wi, arg min fi} then
8: x′i ← max{xmin,min{xmax −Wi, arg min fi}}.
9: i← j.

10: else
11: Redefine fh by fh : x 7→ fh(x) + fi(x+Wh).
12: Wh ←Wh +Wi.
13: Remove i from L.
14: i← h.
15: end if
16: end while
17: for i ∈ {1, . . . , n} \ L do
18: x′i ← x′h +

∑i−1
j=h wj , where h is the maximum index in L that is smaller than i.

19: end for

Algorithm 1: Single Row Placement Algorithm

Finally, some post-optimization heuristics (like exchanging two cells, but also much
more complicated operations) are applied.

The most difficult and important phase is the first one, which we describe here in
detail. If the global placement is very dense in some areas, a significant number of cells
has to be moved. As phase two works in each zone separately, phase one has to guarantee
that no zone contains more objects than fit into it.

In order to prevent long-distance movements within the zones later in phase two,
wide zones are partitioned into regions. Each movable object is assigned to a region. This
means that the center of the movable object must be located in the assigned region. Parts
of an object can overlap with neighboring regions.

Unless all movable objects that are assigned to a region R can be placed legally with
their center in R, some of them have to be moved out of R. But this is not sufficient: in
addition, it may be necessary to move some objects out of certain sequences of consecutive
regions. More precisely, for a sequence of consecutive regions R1, . . . , Rk within a zone,
we define its supply by

supp(R1, . . . , Rk) := max

{
0,

k∑
i=1

(w(Ri)− a(Ri))−
1

2
(wl(R1) + wr(Rk))

−
∑

1≤i<j≤k,(i,j)6=(1,k)

supp(Ri, . . . , Rj)

}
,
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Figure 12. An example with two zones and six regions, each of width 10 (top left), the supply (red) and demand
(green) regions and intervals with their supply and demand (bottom left), and the minimum cost flow instance
(right) with a solution shown in brown numbers. To realize this flow, objects of size 2, 2, and 5, respectively,
have to be moved from the top regions downwards.

where a(Ri) is the width of region Ri, w(Ri) is the total width of cells that are currently
assigned to regionRi, andwl(Ri) andwr(Ri) are the widths of the leftmost and rightmost
cell in Ri, respectively, or zero if Ri is the leftmost (rightmost) region within the zone.

If supp(R1, . . . , Rk) is positive, (R1, . . . , Rk) is called a supply interval. Similarly,
we define the demand of each sequence of consecutive regions, and the demand intervals.
We now define a directed networkG = (V,E, c) on regions, supply intervals, and demand
intervals, in which we compute a minimum cost flow that cancels demands and partly
cancels supplies. Let vertices and edges be defined by

V (G) := {regions, supply intervals, demand intervals}

E(G) := {(A,A′) | A,A′ adjacent regions}

∪ {(A,A′) | A supply interval, A′ maximal proper subset of A}

∪ {(A,A′) | A′ demand interval, A maximal proper subset of A′}.

Let the cost c(A,A′) between two adjacent regions A,A′ be the expected cost of moving
a cell of width 1 from A to A′ and all other arcs costs be zero. The construction of
this uncapacitated minimum cost flow instance is illustrated in Figure 12. We look for a
minimum cost flow f which cancels all supplies:

f(δ+(v))− f(δ−(v)) ≥ supp(v) + dem(v) for all v ∈ V (G).

This can be computed in O(n2 log2 n) time by Orlin’s minimum cost flow algorithm [67].
Figure 13 shows part of a typical result on a real chip.
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Finally the flow is realized by moving objects along flow arcs. This means to move
cells of total size f(A,A′) from region A to region A′ for each pair of neighbors (A,A′).
An exact realization may not exists as small amounts of flow may not be realizable by
wide objects. Therefore the realization is approximated. We scan the arcs carrying flow
in topological order and solve a multi-knapsack problem by dynamic programming for
selecting the best set of cells to be moved for realizing the flow on each arc [93,16].

Of course zones can remain overloaded after realization. In this case phase one is
repeated with increased region widths and decreased demand values. Typically, after a
few iterations of phase 1 no overloaded zones remain.

Figure 13. Small part of a real chip in legalization. Supply regions and intervals are shown in red, demand
regions and intervals in green. The blue edges represent the minimum cost flow, and their width is proportional
to the amount of flow.

The minimum cost flow formulation yields an optimum solution under some as-
sumptions [16], and an excellent one in practice. Experimental results show that the gap
between the computed solution and a theoretical lower bound is only approximately 10%,
and neither routability nor timing is significantly affected [10].

3. Timing optimization

In this section we describe the main ingredients of timing optimization. These include
algorithms for the construction of timing- and routing-aware fan-out trees (repeater trees),
for the timing-oriented logic restructuring and optimization, and for the timing- and
power-aware choice of different physical realizations of individual gates. Each is based
on new mathematical theory.
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Altogether, these routines combined with appropriate net weight generation and
iterative placement runs form the so-called timing-driven placement. Using the new
algorithms introduced in this section the overall turn-around time for timing closure,
including full placement and timing optimization, could be reduced from more than a
week to 26 hours on the largest designs.

3.1. Timing constraints

During optimization the signal propagation through a VLSI chip is estimated by a static
timing analysis. We give a simplified description and refer the interested reader to [83]
for further reading.

At every pin v ∈ P the latest arrival time av of a possible signal occurrence is
computed. Signals are propagated along the edges of the timing graph GT , which is a
directed graph on the vertex set V (GT ) = P of pins in the design. GT contains two
type of edges. First “net“ edges are inserted for each source-sink pin pair (v, w) ∈ N
of a net N ∈ N , directed from the unique source of N to each sink. Second “circuit“
edges (v, w) ∈ E(GT ) are inserted for each input-output pin pair (v, w) of a cell, where
a signal in v triggers a signal in w. For every edge e ∈ E(GT ) a delay de is given. The
delay depends on various parameters, e.g. circuit size, load capacitance (wire plus sink
pin capacitances), net topologies, signal shapes.

The timing graph is acyclic as every cycle in the netlist is cut by a register, which does
not have a direct input to output connection2. Arrival times are propagated in topological
order. At each vertex v ∈ V (GT ) with δ−(v) = ∅ a start time AT (v) is given as design
constraint. It initializes the arrival time in v by av = AT (v). Then for each v ∈ V (GT )
with δ−(v) 6= ∅, the arrival time av is the maximum over all incoming arrival times:

av := max
(u,v)∈δ−(v)

au + d(u,v). (3)

At each endpoint pin v ∈ V (GT ) with δ+(v) = ∅ of the combinational paths required
arrival times RAT (v) are given as design constraints. The signals arrive in time at v if
av ≤ RAT (v). To measure timing feasibility on arbitrary pins, the maximum feasible
required arrival time variable rv is computed for each v ∈ V (GT ). It is initialized by
rv = RAT (v) for all v ∈ V (GT ), δ+(v) = ∅. For the remaining vertices v ∈ V (GT )
with δ+(v) 6= ∅ they are computed in reverse topological order by

rv := min
(v,w)∈δ+(v)

aw − d(v,w). (4)

The difference σv := rv−av is called slack. If it is non-negative the timing constraints
of all paths through v are satisfied. If σv ≥ 0 for all endpoint pins v ∈ V (GT ) with
δ+(v) = ∅, all timing constraints are met, which implies σv ≥ 0 for all nodes v ∈ V (GT ).
The slack can also be defined for an edge (v, w) ∈ E(GT ) by σ(v,w) := rw−d(v,w)−av
with following interpretation. When adding at most σ(v,w) to the delay d(v,w), all paths
through (v, w) are fast enough. Note that σ(v,w) can also be negative; then delays must be
reduced.

2We omit transparent latches here.
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In some applications (e.g. Section 3.3) we are interested in a most critical path.
Observe that there must be at least one path inGT from a start pin v ∈ V (GT ), δ−(v) = ∅
to an endpoint pin v′ ∈ V (GT ), δ+(v′) = ∅, in which each vertex and edge has the
overall worst slack min{σv|v ∈ V (GT )}. Such a path can be determined efficiently
by backward search along a most critical incoming edge, starting from an endpoint pin
v′ ∈ V (GT ), δ+(v′) = ∅ with a smallest slack value σv′ = min{σv|v ∈ V (GT )}.

Beside the introduced late mode constraints earliest arrival time or early mode con-
straints are given, too. Here signals must not arrive too early at the endpoints. Propagation
is analog to (3) and (4) with min and max being swapped. Together with the arrival
times also signal shapes — slews3 in VLSI terminology — are propagated. These are
needed for proper delay calculation. When incorporating slews the above propagation
rules become incorrect, as an early signal with a very large slew can result in later arrival
times in subsequent stages than a late signal with a tight slew. In [97] we describe how to
overcome these slew related problems by a slight modification of the propagation rules.

3.2. Fan-out trees

On an abstract level the task of a fan-out tree is to carry a signal from one gate, the root r
of the fan-out tree, to other gates, the sinks s1, . . . , sn of the fan-out tree, as specified by
the netlist. If the involved gates are not too numerous and not too far apart, then this task
can be fulfilled just by a metal connection of the involved pins, i.e. by a single net without
any repeaters. But in general we need to insert repeaters (buffers or inverters). Inverters
logically invert a signal while buffers implement the identity function. A repeater tree is a
netlist in which all circuits are repeaters, r is the only input, and S is the set of outputs.

In fact, fan-out trees are a very good example for the observation mentioned in the
introduction that the development of technology continually creates new complex design
challenges that also require new mathematics for their solution. Whereas circuit delay
traditionally dominated the interconnect delay and the construction of fan-out trees was of
secondary importance for timing, the feature size shrinking is about to change this picture
drastically.

Extending the current trends one can predict that in future technologies more than half
of all circuits of a design will be needed just for bridging distances, i.e. in fan-out trees.
The reason for this is that with decreasing feature sizes the wire resistances increase more
than wire capacitances decrease. The delay over a pure metal wire is roughly proportional
to the product of the total resistance and capacitance. It increases quadratically with its
length, as both resistance and capacitance depend linearly on the length. But by inserting
repeaters the growth rate can be kept linear. In current technologies buffers are realized
by two subsequent inverters. Therefore, inverters are more flexible and typically faster
than buffers.

Repeaters can be chosen from a finite library L of different sizes. Smaller sizes have
a smaller drive strength. The smaller a repeater is, the higher is its delay sensitivity on the
load capacitance ∂delay

∂cap . On the other hand do smaller repeaters involve smaller input pin
capacitances and therefore smaller load capacitances and delays for the predecessor. We
now define the repeater tree problem.

3The slew of a signal is an estimate for how fast the voltage changes
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REPEATER TREE PROBLEM

Instance:
• A root r and a set S of sinks.
• a start time AT (r) at the root r and a required arrival time RAT (s) at

each sink s,
• a parity in {+,−} for each sink indicating whether it requires the signal

or its inversion,
• placement information for the root and the sinks
Pl(r), P l(s1), P l(s2), ..., P l(sn) ∈ [xmin, xmax]× [ymin, ymax],

• physical information about the driver strength of r and the input capaci-
tances of the sinks s ∈ S, and

• physical information about the wiring and the library L of available
repeaters (inverters and buffers).

Task: Find a repeater tree T that connects r with all sinks in S such that

• the desired parities are realized (i.e. for each sink s the number of
inverters on the r-s-path in T is even iff s has parity +),

• the delay from r to s is at most RAT (s)−AT (r), for each s ∈ S,
• and the power consumption is minimum.

In another formulation, AT (r) is not given but should be maximized. The procedure
that we proposed for fan-out tree construction [5,6,7] works in two phases. The first
phase generates a preliminary topology for the fan-out tree, which connects very critical
sinks in such a way as to maximize the minimum slack, and which minimizes wiring
for non-critical sinks. During the second phase the resulting topology is finalized and
buffered in a bottom-up fashion using mainly inverters and respecting the parities of the
sinks.

A topology for root r and set S of sinks is a pair (T, P l) where T is an arborescence
rooted at r in which the root has one child, the sinks have no children, and all other
vertices have two children, and Pl : V (T ) \ ({r} ∪ S) → [xmin, xmax] × [ymin, ymax]
is an embedding of the internal vertices of T in the chip area. Let us denote by T[r,s] the
unique path from r to s in T . A simplified delay model is used to model delay within
(T, P l). The delay on the path from the root r to a sink s ∈ S is approximated by

cnode · (|E(T[r,s])| − 1) +
∑

(u,v)∈E(T[r,s])

cwire · ||Pl(u)− Pl(v)||1 (5)

The second term in this formula accounts for the wire or distance delay of the r-s-path in
T . This is a linear function in wire length as buffering from phase two is anticipated. The
first term adds an additional delay of cnode for every bifurcation. This reflects the fact that
a bifurcation adds additional capacitance. A constant adder is used as repeaters can be
inserted later to shield large downstream capacitances in the branches.

The involved constants are derived in a pre-processing step. The accuracy of this very
simple delay model is illustrated in Figure 14, which compares the estimated delay with
the measured delay after buffering and sizing at the critical sinks.

Our topology generation algorithm inserts the sinks by a greedy strategy. First the
sinks are sorted by their criticality. As criticality we use an upper bound for the slack at
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Figure 14. The simple timing model used for topology generation matches actual timing results after buffering
well.

the sink, namely the slack that would result at s ∈ S if we connected s to r by a shortest
possible wire without any bifurcation:

σs := RAT (s)−AT (r)− cwire||Pl(r)− Pl(s)||1. (6)

The individual sinks are now inserted one by one into the preliminary topology in
order of non-increasing criticality, i.e. non-decreasing value of σs. When we insert a new
sink s, we consider all arcs e = (u, v) ∈ E(T ) of the preliminary topology constructed
so far and estimate the effect of subdividing e by a new internal node w and connecting s
to w.

The sink s will be appended to a new vertex subdividing an arc e of T that maximizes
ξσe − (100− ξ)le, where σe and le estimate the corresponding worst slack at r and the
total length, respectively, when choosing e. The parameter ξ ∈ [0, 100] allows us to favor
slack maximization for timing critical instances or wiring minimization for non-critical
instances. Figure 15 gives an example for a preliminary topology.

In most cases it is reasonable to choose values for ξ that are neither too small nor too
large. Nevertheless, in order to mathematically validate our procedure we have proved
optimality statements for the extreme values ξ = 0 and ξ = 100. If we ignore timing
(ξ = 0) and choose an appropriate order of the sinks, the final length of the topology is at
most 3/2 times the minimum length of a rectilinear Steiner tree connecting the root and
the sinks. If we ignore wiring (ξ = 100), the topology realizes the optimum slack with
respect to our delay model (see below).

To measure the quality of the resulting topologies in practice, we can compute bounds
for performance and power consumption to compare against. A minimum power topology
obviously arises from a minimum Steiner tree on S ∪ {r}. Some Steiner points may need
to be replaced by two topology nodes with same coordinates. The following bound can be
specified for the maximum achievable slack:
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Figure 15. An example for topology generation with AT (r) = 0, cwire = 1, cnode = 2, and three sinks
a, b and c with displayed required arrival times. The criticalities are σa = 15 − 0 − (4 + 2 + 6) = 3,
σb = 16 − 0 − (4 + 2 + 3) = 7, and σc = 11 − 0 − (4 + 5) = 2. Our algorithm first connects the most
critical sink c to r. The next critical sink is a which is inserted into the only arc (r, c) creating an internal node
w. For the insertion of the last sink b there are now three possible arcs (r, w), (w, a), and (w, c). Inserting b
into (w, a) creates the displayed topology whose worst slack is −1, which is best possible here.

Theorem 4. The maximum possible slack σmax of a topology (T, P l) with respect to our
delay model is at most

−cnode · log2

(∑
s∈S

2
−
(
RAT (s)−AT (r)−cwire||Pl(r)−Pl(s)||1

cnode

))
.

Proof: If |S| = 1, the statement is trivial. Let us assume |S| > 1. This means that we
have at least one internal node in T . We can assume that all internal nodes are placed at
Pl(r). The slack of a such a topology T is at least σmax if and only if

RAT (s)−AT (r)− cwire||Pl(r)− Pl(s)||1 − cnode · (|E(T[r,s])| − 1) ≥ σmax,

for all sinks s. Equivalently,

|E(T[r,s])| − 1 ≤ RAT (s)−AT (r)− cwire||Pl(r)− Pl(s)||1
cnode

− σmax

cnode
.

By Kraft’s inequality [54] there exists a rooted binary tree with n leaves at depths
l1, l2, . . . , ln if and only if

∑n
i=1 2−li ≤ 1. If we contract the arc incident to r in our

topology we obtain a binary tree for which (|E(T[r,s])| − 1) is exactly the depth of sink s
(remember |S| > 1). Now Kraft’s inequality implies the theorem.
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It is possible to calculate a slightly better and numerically stable bound using Huffman
coding [40]: if we set as in (6)

σs = RAT (s)−AT (r)− cwire||Pl(r)− Pl(s)||1

for all s ∈ S, order these values σs1 ≤ σs2 ≤ · · · ≤ σsn , and iteratively replace the
largest two σsn−1 and σsn by −cnode + min{σsn−1 , σsn} = −cnode + σsn−1 until only
one value σ∗ is left, then the maximum possible slack with respect to our delay model is
at most this σ∗. This bound is never worse than the closed formula of Theorem 4. In fact,
it corresponds to shortest wires from each sink to the source and an optimum topology
all internal nodes of which are at the position of the root. Such a topology would of
cause waste too many wiring resources and lead to excessive power consumption. The
topology generated by our algorithm is much better in these respects. Moreover we have
the following guarantee.

Theorem 5. For cwire = 0, the topology constructed by the above procedure with
ξ = 100 realizes the maximum possible slack with respect to our delay model.

For cnode = 1 and integer values forAT (r) andRAT (s), s ∈ S, the theorem follows
quite easily from Kraft’s inequality, by induction on |S| [5]. The general case is more
complicated; see [7].

After inserting all sinks into the preliminary topology, the second phase begins, in
which we insert the actual inverters [6]. For each sink s we create a cluster C containing
only s. In general a cluster C is assigned a position Pl(C), a set of sinks S(C) all of
the same parity, and an estimate W (C) for the wiring capacitance of a net connecting a
circuit at position Pl(C) with the sinks in S(C). The elements of S(C) are either original
sinks of the fan-out tree or inverters that have already been inserted.

There are three basic operations on clusters. Firstly, if W (C) and the total input
capacitance of the elements of S(C) reach certain thresholds, we insert an inverter I at
position Pl(C) and connect it by wire to all elements of S(C). We create a new cluster
C ′ at position Pl(C) with S(C ′) = {I} and W (C) = 0. As long as the capacitance
thresholds are not attained, we can move the cluster along arcs of the preliminary topology
towards the root r. By this operation W (C) increases while S(C) remains unchanged.
Finally, if two clusters happen to lie on a common position and their sinks are of the
same parity, we can merge them, but we may also decide to add inverters for some of
the involved sinks. This decision again depends on the capacitance thresholds and on the
objectives timing and wire length.

During buffering, the root connects to the clusters via the preliminary topology and
the clusters connect to the original sinks si via appropriately buffered nets. Once all
clusters have been merged to one which arrives at the root r, the construction of the
fan-out tree is completed.

The optimality statements which we proved within our delay model and the final
experimental results show that the second phase nearly optimally buffers the desired
connections. Our procedure is extremely fast. The topology generation solved 4.6 million
instances with up to 10000 sinks from a current 90 nm design in less than 100 seconds on
a 2.93 GHz Xeon machine [6], and the buffering is completed in less than 45 minutes. On
average we deviated less than 1.5 % from the minimum length of a rectilinear Steiner tree
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Figure 16. A sequence of circuits with Boolean functions g1, g2, . . . , gn on a critical path P .

when minimizing wire length, and less than 3 ps from the theoretical upper slack bound
when maximizing worst slack.

We are currently including enhanced buffering with respect to timing constraints,
wire sizing, and plane assignment in our algorithm. We are also considering an improved
topology generation, in particular when placement or routing resources are limited.

3.3. Fan-in trees

Whereas in the last section one signal had to be propagated to many destinations via
a logically trivial structure, we now look at algorithmic tasks posed by the opposite
situation in which several signals need to be combined to one signal as specified by some
Boolean expression. The netlist itself implicitly defines such a Boolean expression for all
relevant signals on a design. The decisions about these representations were taken at a
very early stage in the design process, i.e. in logic synthesis, in which physical effects
could only be crudely estimated. At a relatively late stage of the physical layout process
much more accurate estimates are available. If most aspects of the layout have already
been optimized but we still see negative slack at some cells, changing the logic that feeds
the cell producing the late signal is among the last possibilities for eliminating the timing
problem. Traditionally, late changes in the logic are a delicate matter and only very local
modifications replacing some few cells have been considered, also due to the lack of
global algorithms.

To overcome the limitations of purely local and conservative changes, we have
developed a totally novel approach that allows for the redesign of the logic on an entire
critical path taking all timing and placement information into account [79]. Keep in
mind that static timing analysis computes slack values for all pins of a design and that it
reports timing problems for instance as lists of critical paths. Whereas most procedures
for Boolean optimization of combinational logic are either purely heuristic or rely on
exhaustive enumeration and are thus very time consuming, our approach is much more
effective.

We consider a critical path P which combines a number of signals x1, x2, . . . , xn
arising at certain times AT (xi) and locations Pl(xi) by a sequence g1, g2, . . . , gn−1 of
2-input gates as in Figure 16. Then we try to re-synthesize P in a best possible way.

27



CRITICAL PATH LOGIC RESYNTHESIS PROBLEM

Instance:
• A set X of sources and a sink y,
• a start time AT (x) (and possibly a slew) at each source x ∈ X and a

required arrival time RAT (y) at the sink,
• placement information for the sources and the sink Pl(x1), Pl(x2), ...,
Pl(xn) , Pl(y) ∈ [xmin, xmax]× [ymin, ymax],

• a Boolean expression of the form

y = f(x1, x2, ..., xn) = gn−1(...g3(g2(g1(x1, x2), x3), x4)..., xn)

where the gi are elementary Boolean functions,
• physical information about the driver strength of the sources and the

input capacitances of the sink, and
• physical information about the wiring and the library L of available

elementary logical circuits (and, or, nand, nor, invert,...).

Task: Find a circuit representation of y as a function of the x ∈ X

• using elementary Boolean circuits,
• together with placement and sizing information for the circuits such that
• the computation of y completes before RAT (y), or as early as possible.

Our algorithm first generates a standard format. It decomposes complex circuits on
P into elementary and- and or-circuits with fan-in two plus inversions. Applying the de
Morgan rules we eliminate all inversions except for those on input signals of P . We arrive
at a situation in which P is essentially represented by a sequence of and- and or-circuits.
Equivalently, we could describe the procedure using nand-circuits only, and we will
indeed use nands for the final realization. However, for the sake of a simpler description
of our algorithm, and- and or-circuits are more suitable.

We now design an alternative, logically equivalent representation of the signal pro-
duced by gm as a function of the xi in such a way that late input signals do not pass through
too many logic stages of this alternative representation. This is easy if this sequence
consists either just of and-circuits or just of or-circuits. In this situation every binary tree
with n leaves leads to a representation of the Boolean function by identifying its leaves
with the xi and its internal nodes with and-circuits or or-circuits. If we consider only
the arrival times AT (xi) of the signals which might be justified because all locations are
close together, we can easily construct and implement an optimal representation using
Huffman coding. If we consider both AT (xi) and Pl(xi), then inverting time the problem
is actually equivalent to the construction of a fan-out tree which we have described in
Section 3.2.

The most difficult case occurs if the and- and or-circuits alternate, i.e. the function
calculated by P is of the form
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Figure 17. Three logically equivalent circuits for the function f(a, b, ..., h) that corre-
spond to the formulas f(a, ..., h) = ((((((a ∧ b) ∨ c) ∧ d) ∨ e) ∧ f) ∨ g) ∧ h,
f(a, ..., h) = ((a ∧ b) ∧ ((d ∧ f) ∧ h)) ∨ (((((c ∧ d) ∧ f) ∨ (e ∧ f)) ∧ h) ∨ (g ∧ h)), and
f(a, ..., h) = ((((a ∧ b) ∧ d) ∨ (c ∧ d)) ∧ (f ∧ h)) ∨ (((e ∧ f) ∧ h) ∨ (g ∧ h)). The first path is a typical
input of our procedure and the two alternative netlists have been obtained by the dynamic programming
procedure based on the identity (7). Ignoring wiring and assuming unit delays for the circuits, the second netlist
would for instance be optimal for AT (a) = AT (b) = AT (g) = AT (h) = 3, AT (e) = AT (f) = 1, and
AT (c) = AT (d) = 0, leading to an arrival time of 6 for f(a, ..., h) instead of 10 in the input path.

f(x1, x
′
1, x2, x

′
2, . . . , xn, x

′
n) := ((· · · (((x1 ∧ x′1) ∨ x2) ∧ x′2) · · · ) ∨ xn) ∧ x′n)

=

n∨
i=1

xi ∧
 n∧
j=i

x′j

 .
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Figure 18. The logic circuit corresponding to equation (7)

See Figure 17 for an example. In this case we apply dynamic programming based on
identities like the following:

f(x1, . . . , x
′
n) =

f(x1, . . . , x
′
l) ∧

 n∧
j=l+1

x′j

 ∨ f(xl+1, . . . , x
′
n). (7)

Note that equation (7) corresponds to a circuit structure as shown in Figure 18.
Our dynamic programming procedure maintains sets of useful sub-functions such as

f(xi, . . . , x
′
j) and

∧j
k=i x

′
k together with estimated timing and placement information. In

order to produce the desired final signal, these sets of sub-functions are combined using
small sets of circuits as shown for instance in Figure 18, and the timing and placement
information is updated. We maintain only those representations that are promising. The
final result of our algorithm is found by backtracking through the data accumulated by the
dynamic programming algorithm. After having produced a faster logical representation,
we apply de Morgan rules once more and collapse several consecutive elementary circuits
to more complex ones if this improves the timing behavior. In many cases this results
in structures mainly consisting of nand-circuits and inverters. Certainly, the number of
circuits used in the new representation is typically larger than in the old representation but
the increase is at most linear.

Our procedure is very flexible and contains the purely local changes as a special case.
Whereas the dynamic programming procedure is quite practical and easily allows us to
incorporate physical insight as well as technical constraints, we can validate its quality
theoretically by proving interesting optimality statements. In order to give an example
for such a statement, let us neglect placement information, assume non-negative integer
arrival times and further assume a unit delay for and- and or-circuits. We proceed in
two steps. First, we derive a lower bound on the arrival time of desired signal and then
estimate the arrival time within our new logical representation.
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Theorem 6. If C is a circuit of fan-in 2 for some Boolean function f depending on the
inputs x1, x2, ..., xn with arrival times AT1, AT2, ..., ATn ∈ N0, then

AT (f, C) ≥

⌈
log2

(
n∑
i=1

2ATi

)⌉
,

where AT (f, C) denotes the arrival time of the value of f as computed by C assuming a
unit delay for every circuit.

Proof: The existence of a circuit C of fan-in 2 that calculates the value of f by
the time T implies the existence of a rooted binary tree with n leaves of depths (T −
AT1), (T−AT2), ..., (T−ATn) ∈ N0. By Kraft’s inequality, such a tree exists if and only

if
n∑
i=1

2−(T−ATi) ≤ 1 or, equivalently, T ≥ log2

(
n∑
i=1

2ATi
)

, and the proof is complete.

2

In order to estimate the arrival time within the new logical representation we have
to analyze the growth behavior of recursions based on the decomposition identities used
during the dynamic programming. If we just use (7) for instance, then we have to estimate
the growth of the following recursion which reflects the additional delays incured by the
three circuits in Figure 18: For n ≥ 2 and non-negative integers a, a1, . . . , an ∈ N0 let

AT (a) = a

AT (a1, ..., an) = min
1≤l≤n−1

max{AT (a1, ..., al) + 2, AT (al+1, ..., an) + 1}.

We have demonstrated how to analyze such recursions in [79,78,81] and how to obtain
results like the following.

Theorem 7. If a1, a2, ..., an ∈ N0, then

AT (a1, a2, ..., an) ≤ 1.44 log2

(
n∑
i=1

2ai

)
+ 2.

Comparing the bounds in Theorems 6 and 7 implies that just using (7) during the
dynamic programming would lead to an algorithm with asymptotic approximation ratio
1.44 [79]. Using further decomposition identities this can be reduced to (1 + ε) for
arbitrary ε > 0 [78]. Further details about practical application and computational results
can be found in [82].

So far we have described an algorithm for the redesign of a critical path which is in fact a
main issue during timing closure. This algorithm was “blind” for the actual function that
was involved and hence applicable to almost every critical path. We have also devised
procedures for the timing-aware design of more complex functions. As an example
consider the following so-called prefix problem which is essential for the construction of
fast binary adders.
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PREFIX PROBLEM

Instance: An associative operation ◦ : D2 → D and inputs x1, x2, ..., xn ∈ D.

Task: Find a circuit computing x1 ◦ x2 ◦ ... ◦ xi for all 1 ≤ i ≤ n.

Applying the above algorithm to the n desired output functions would lead to a circuit
with good delay properties but with a quadratic number of circuits. Similar constructions
with close-to-optimal delay but quadratic size were described also by Liu et al. in [56]. In
[80] we constructed circuits solving the prefix problem with close-to-optimal delay and
much smaller sizes of O(n log(log(n))).

For the addition of two n-bit binary numbers whose 2n bits arrive at times
t1, t2, ..., t2n ∈ N0 this leads to circuits over the basis {∨,∧,¬} of fan-in 2 for ∨- or
∧-circuits and fan-in 1 for ¬-circuits calculating the sum of the two numbers with size
O(n log (log (n))) and delay

2 log2

(
2n∑
i=1

(
2ti
))

+ 6 log2 (log2 (n)) +O(1).

In view of Theorem 6, the delay bound is close-to-optimal and the bound on the size is
optimal up to a factor of O(log(log(n))). The best known adders are of depth log2(n) +

O
(√

log(n)
)

and size O(n log(n)) [19] or size O(n) [46], respectively. The adder
developed in [99], which takes arrival times into account, has size O(n log(n)), but no
delay bound has been proved.

3.4. Gate sizing and Vt-assignment

The two problems considered in this section consist of making individual choices from
some discrete sets of possible physical realizations for each circuit of the netlist such that
some global objective function is optimized.

For gate sizing one has to determine the size of the individual circuits measured
for instance by their area or power consumption. This size affects the input capacitance
and driver strength of the circuit and therefore has an impact on timing. A larger circuit
typically decreases downstream delay and increases upstream delay. Circuits with a single
output pin are called (logic) gates. Assuming gates instead of general multi-output circuits
simplifies mathematical problem formulations. This is the reason why the problem is
called rather gate sizing than circuit sizing.

Whereas the theoretically most well-founded approaches for the gate sizing problem
rely on convex/geometric programming formulations [8,22,29], these approaches typically
suffer from their algorithmic complexity and restricted timing models. In many situations,
approaches that choose circuit sizes heuristically can produce competitive results because
it is much easier to incorporate local physical insight into heuristic selection rules than
into a sophisticated convex program. Furthermore, the convex programming formulations
often assume continuous circuit size while standard cell libraries typically only offer a
discrete set of different sizes. In BonnOpt we use both, a global formulation and convex
programming for the general problem as well as heuristics for special purposes.

For the simplest form of the global formulation we consider a directed graph G
which encodes the netlist of the design. G can be considered as the timing graph GT from
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Figure 19. A simple electrical model of a circuit. The input capacitance Cin and the internal capacitance Cint

are proportional to the scaling factor of the circuit while the internal resistance Rint is antiproportional.

Section 3.1 after contracting all input pin vertices. For a set V0 of nodes v — e.g., start
and end nodes of maximal paths — we are given signal arrival times av and we must
choose circuit sizes x = (xv)v∈V (G) ∈ [l, u] ⊆ RV (G) and arrival times for nodes not in
V0 minimizing

∑
v∈V (G)

xv

subject to the timing constraints

av + d(v,w)(x) ≤ aw

for all arcs (v, w) ∈ E(G). The circuit sizes xv are scaling factors for the internal
structures of the circuit v (see Figure 19).

For simplicity it is assumed that the input and internal capacitances of circuit v are
proportional to xv while the internal resistance is antiproportional to xv . Using the Elmore
delay model [27], the delay through circuit v is of the form Rint(Cint + Cload) where
Cload is the sum of the wire capacitance and the input capacitances of the structures that
are charged over the circuit v. SinceCload depends on the circuit sizes of the corresponding
circuits in the same way, the delay d(v,w)(x) of some arc (v, w) of G is modeled by a
linear function with positive coefficients depending on terms of the form xv, 1

xv
and

xw
xv

. Dualizing the timing constraints via Lagrange multipliers λ(u,v) ≥ 0 leads to the
following Lagrange function.
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L(x, a, λ)

=
∑

u∈V (G)

xu +
∑

(u,v)∈E(G)

λ(u,v)
(
au + d(u,v)(x)− av

)
=

∑
u∈V (G)

xu +
∑

(u,v)∈E(G)

λ(u,v)d(u,v)(x) +
∑

(u,v)∈E(G)

λ(u,v)(au − av)

=
∑

u∈V (G)

xu +
∑

(u,v)∈E(G)

λ(u,v)d(u,v)(x)

+
∑

u∈V (G)

au

 ∑
v:(u,v)∈E(G)

λ(u,v) −
∑

v:(v,u)∈E(G)

λ(v,u)

 .

Since after the dualization all arrival times (av)v∈V (G) (except those that are constant) are
free variables, every optimal solution of the dual maximization problem has the property
that

∑
u∈V (G)

au

 ∑
v:(u,v)∈E(G)

λ(u,v) −
∑

v:(v,u)∈E(G)

λ(v,u)

 = 0

for all choices of au, i.e. the Lagrange multipliers λ(u,v) ≥ 0 constitute a non-negative
flow on the timing graph [22].

Therefore, for given Lagrange multipliers the problem reduces to minimizing a
weighted sum of the circuit sizes x and delays d(u,v)(x) subject to x ∈ [l, u]. This step is
typically called local refinement. Generalizing results from [22,24,25,55] we proved that it
can be solved by a very straightforward cyclic relaxation method with linear convergence
rate in [77]. The overall algorithm is the classical constrained subgradient projection
method (cf. [60]). The known convergence guarantees for this algorithm require an exact
projection, which means that we have to determine the above-mentioned non-negative
flow on G that is closest to some given vector (λe)e∈E .

Since this exact projection is actually the most time-consuming part, practical imple-
mentations use crude heuristics having unclear impact on convergence and quality. To
overcome this limitation, we proved in [76] that the convergence of the algorithm is not
affected by executing the projection in an approximate and much faster way. This is done
by combining the subgradient projection method [70,71] in a careful way with the method
of alternating projections [23] and results in a stable, fast, and theoretically well-founded
implementation of the subgradient projection procedure for circuit sizing.

Nevertheless, in practice there exist advanced heuristics that are also good and much
faster than the subgradient method. Such approaches improve all circuits iteratively based
on the “dual“ slack values. The improvement does not follow a strict mathematical formula
but makes reasonable choices heuristically. Furthermore, time-consuming slack updates
are not done after every single cell change but only once per iteration. Additional side
constraints like load and slew limits, or placement density can be incorporated easily.

In [37], we developed a heuristic that yields competitive results compared to con-
tinuous mathematical optimization models, which lack accuracy due to simplified delay
models and rounding errors. The worst path delays are within 6% of a lower delay bound
on average.
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Global circuit sizing approaches are followed by local search on the critical paths.
Here delay effects due to layout changes are computed accurately and slacks are updated
after every circuit change. As accurate computations are extremely time consuming, only
a few circuits (approximately 1%) are considered by this local search. Afterwards the
worst path delays are within 2% of a lower delay bound on average.

The second optimization problem that we consider in this section is Vt-assignment.
A physical consequence of feature size shrinking is that leakage power consumption
represents a growing part of the overall power consumption of a chip. Increasing the
threshold voltage of a circuit reduces its leakage but increases its delay. Modern libraries
offer circuits with different threshold voltages. The optimization problem that we face is
to choose the right threshold voltages for all circuits, which minimize the overall (leakage)
power consumption while respecting timing restrictions.

As proposed in [84,36], we first consider a netlist in which every circuit is realized
in its slowest and least-leaky version. We define an appropriate graph G whose arcs are
assigned delays, and some of whose arcs correspond to circuits for which we could choose
a faster yet more leaky realization. For each such arc e we can estimate the power cost
ce per unit delay reduction. We add a source node s joined to all primary inputs and to
all output nodes of memory elements and a sink node t joined to all primary outputs and
to all input nodes of memory elements. Then we perform a static timing analysis on this
graph and determine the set of arcs E′ that lie on critical paths.

The general step now consists in finding a cheapest s-t-cut (S, S̄) inG′ = (V (G), E′)

by a max-flow calculation in an auxiliary network. Arcs leaving S that can be made
faster contribute ce to the cost of the cut, and arcs entering S that can be made slower
contribute −ce to the cost of the cut. Furthermore, arcs leaving S that cannot be made
faster contribute∞ to the cost of the cut, and arcs entering S that cannot be made slower
contribute 0 to the cost of the cut.

If we have found such a cut of finite cost, we can improve the timing at the lowest
possible power cost per time unit by speeding up the arcs from S to S̄ and slowing down
(if possible) the arcs from S̄ to S. The acceleration is performed until non-accelerated
paths become critical and the next iteration is performed on a growing auxiliary network.
Figure 20 illustrates the algorithm. The optimality statement is proved in [69] subject to
the simplifying assumptions that the delay/power dependence is linear and that we can
realize arbitrary Vt-values within a given interval, which today’s libraries typically do
not allow. Nevertheless, the linearity of the delay/power dependence approximately holds
locally and the discrete selectable values are close enough. There are strong connections
to the so-called discrete time-cost tradeoff problem as studied for instance in [88].

We point out that the described approach is not limited to Vt-assignment. It can be
applied whenever we consider roughly independent and local changes and want to find
an optimal set of operations that corrects timing violations at minimum cost. This has
been part of BonnTools for some time [28], but previously without using the possibility
of slowing arcs from S̄ to S, and thus without optimality properties.
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Figure 20. A time-cost-tradeoff instance (top). For each arc the maximum delay, the minimum delay, and
the cost increase per unit delay decrease are specified. Initially every arc delay is chosen slowest possible.
All three paths have the same delay of 6 time units. The minimum A-D-cut is ({A,C}, {B,D}) with value
3 = 1 + 1 + 1 (bottom left). After accelerating the involved arcs (A,B), (C,B) and (C,D) all paths have
delay 5. Now the minimum cut is ({A,B}, {C,D}) with value 7 = 4+4−1 (bottom right). Note that (A,C)
and (B,D) are leaving the cut and therefore accelerated, but (C,B) is entering the cut and decelerated. All
arcs except (C,B) reached their minimum delay therefore have infinity capacitance. Now the minimum cut
has weight infinity and the algorithm stops. The critical paths A → B → D and A → C → D cannot be
accelerated further.

4. Clock scheduling and clock tree construction

Most computations on chips are synchronized. They are performed in multiple cycles. The
result of a cycle is stored in special memory elements (registers, flip-flops, latches) until it
is used as input for the next cycle. Each memory element receives a periodic clock signal,
controlling the times when the bit at the data input is to be stored and transferred to further
computations in the next cycle. Today it is well-known that striving for simultaneous
clock signals (zero skew), as most chip designers did for a long time, is not optimal.
By clock skew scheduling, i.e. by choosing individual clock signal arrival times for the
memory elements, one can improve the performance. However, this also makes clock
tree synthesis more complicated. For nonzero skew designs it is very useful if clock tree
synthesis does not have to meet specified points in time, but rather time intervals. We
proposed this methodology together with new algorithms in [3], [4], and [35]. Since then
it has been successfully applied on many industrial high performance ASICs.
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Figure 21. A latch graph with 4 latches (numbered boxes). The arc numbers specify the longest path delays.
With a zero skew tree — when all latches switch simultaneously — the slowest path (3→ 1) determines the
cycle time Tzs = 1.2. With an optimum scheduled tree the slowest average delay cycle (1 → 2 → 4 → 1)
determines the cycle time Topt = 0.9.

4.1. Clock skew scheduling

Let us define the latch graph as the digraph whose vertex set is the set of all memory
elements and which contains an arc (v, w) if the netlist contains a path from the output of
v to the input of w. Let d(v,w) denote the maximum delay of a path from v to w. If all
memory elements receive a periodic clock signal of the same frequency 1

T (i.e. their cycle
time is T ), then a zero skew solution is feasible only if all delays are at most T . Figure 21
shows a latch graph with four latches. In this example the minimum cycle time with a
zero skew tree would be 1.2, bounded by the path 3 → 1. With clock skew scheduling
one can relax this condition. Let latch 3 in the above example switch earlier by 0.2 time
units. Now signals on path 3→ 1 could spent 0.2 more time units per cycle. In turn the
maximum allowed delay for signals on path 4 → 3 would decrease by 0.2 time units,
which would not harm the overall cycle time as the path delay of 0.4 is very fast. Now
path 2→ 4 determines a limit for the minimum cycle time of 1.1.

Motivated by this observation, the question arises how much can we improve the
performance for given delays? We ask for arrival times av of clock signals at all memory
elements x such that

av + d(v,w) ≤ aw + T (8)

holds for each arc (v, w) of the latch graph. We call such arrival times feasible. Now the
best achievable cycle time T due to clock scheduling is given by following theorem.

Theorem 8. Given a latch graph G with arcs delays d, the minimum cycle time T for
which feasible arrival times a : V (G)→ R exist equals the maximum mean delay dE(C)

|E(C)|
of a directed cycle in C in G.

Proof: T is feasible if and only if there are arrival times a such that:

ac + d(v,w) ≤ aw + T ∀(v, w) ∈ E(G).

From shortest path theory it is known that such arrival times (node potentials) exist if and
only if (G, c) does not contain any cycle with negative total cost, where c(e) := T − de.
Equivalently,
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Figure 22. Slack histograms showing the improvement due to clock skew scheduling and appropriate clock tree
synthesis; left: zero skew, right: with BonnClock trees. Each histogram row represents a slack interval (in ns)
and shows the number of circuits with their worst slacks in this range. The placements on top are also colored
according to the worst circuit slacks.

T ≥
dE(C)

|E(C)|
for all cycles C in G.

This shows that the minimum possible T equals the longest average delay of a cycle.
In the example of Figure 21 this gives an optimum cycle time of 0.9, which can be

computed easily by enumerating all three cycles. In general, the optimal feasible cycle
time T and feasible clock signal arrival times a(T ) can be computed by minimum mean
cycle algorithms, e.g. those of Karp [45] or Young, Tarjan, and Orlin [100].

However, this simple situation is unrealistic. Today systems on a chip have multiple
frequencies and often several hundred different clock domains. The situation is further
complicated by transparent latches, user-defined timing tests, and various advanced design
methodologies.

Moreover, it is not sufficient to maximize the frequency only. The delays that are
input to clock skew scheduling are necessarily estimates: detailed routing will be done
later and will lead to different delays. Thus one would like to have as large a safety margin
— positive slack — as possible. In analogy to the slack definition from Section 3.1 the arc
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slack σ(v,w) for given T and a is defined as σ(v,w) := aw − av − d(v,w) +T for every arc
(v, w) ∈ E(G). Note that aw + T defines a required arrival time for signals entering latch
w. In fact, maximizing the worst slack by clock scheduling is equivalent to minimizing
the cycle time:

Proposition 9. Let G be a latch graph with arc delays d. Let T ′ be the minimum possible
cycle time for (G, d), T > 0, and

σ′T = max
a

min
(v,w)∈E(G)

(
aw − av − d(v,w) + T

)
be the maximum achievable worst slack for cycle time T . Then

T ′ = T − σ′T .

Proof: This follows from the observation that σ′T ′ = 0 and the difference T − σ′T is
invariant in T .

In practice the cycle time is a fixed input parameter and clock scheduling is used to
achieve this cycle time and optimize the overall slack distribution.

Next, signals can also be too fast. This means that we are also given minimum delays
δ(v,w) of each path (v, w) ∈ E(G), and a signal must not arrive in the previous cycle:

av + δ(v,w) ≥ aw, ∀(v, w) ∈ E(G).

Although such early-mode violations can be repaired by delay insertion via buffering,
this can be very expensive in terms of placement and wiring resources as well as power
consumption. Clock skew scheduling can remove most early-mode violations at almost
no cost.

Finally, it is very hard to realize arbitrary individual arrival times exactly; moreover
this would lead to high power consumption in clock trees. Computing time intervals
rather than points in time is much better. Without making critical paths any worse, the
power consumption (and use of space and wiring resources) by clock trees can be reduced
drastically. Intervals for the clock arrival times can be introduced by splitting every
v ∈ V (G) into two nodes vl, vu and adding the constraints avl ≤ avu . Delay constraints
have to be reconnected to the corresponding split nodes, i.e. av + d(v,w) ≤ aw + T is
replaced by avu + d(v,w) ≤ awl + T . Now [avl , avu ] defines an admissible arrival time
interval for v.

A three-stage clock skew scheduling approach was proposed by Albrecht et al. [4].
Firstly, only late-mode slacks are considered. Then early-mode violations are reduced
(more precisely, slacks that can be increased by inserting extra delays), without decreasing
any negative or small positive late-mode slacks. Thirdly, a time interval for each memory
element is computed such that whenever each clock signal arrives within the specified
time interval, no negative or small positive slack will decrease. In the next section we
discuss how to balance a certain set of slacks while not decreasing others.
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4.2. Slack balancing

In [4,34,36], generalizing the early work of Schneider and Schneider [85] and Young,
Tarjan and Orlin [100], we have developed slack balancing algorithms for very general
situations. The most general problem can be formulated as follows.

THE SLACK BALANCING PROBLEM

Instance: A directed graph G (the timing graph), c : E(G)→ R (delays),
a set F0 ⊆ E(G) (arcs where we are not interested in positive slack) and
a partition F of E(G) \ F0 (groups of arcs in which we are interested in
the worst slack only), and weights w : E(G) \ F0 → R>0 (sensitivity of
slacks), such that there are no positive delay cycles in (V, F0).

Task: Find arrival times π : V (G)→ R with

π(v) + c(e) ≤ π(w) for e = (v, w) ∈ F0 (9)

such that the vector of relevant slacks(
min

{
π(w)− π(v)− c(e)

w(e)

∣∣∣∣∣ e = (v, w) ∈ F

})
F∈F

(10)

(after sorting entries in non-decreasing order) is lexicographically maximal.

Note that the delays c include cycle adjusts and thus can be negative (for the latch
graph example above c(e) is the propagation delay minus the cycle time T ). The conditions
for e ∈ F0 correspond to edges on which slack must be non-negative, but the actual
amount is not of interest. In the following we denote σπ(e) := π(w) − π(v) − c(e) as
the slack of e ∈ E(G) with respect to the node potential π.

An alternative formulation of the SLACK BALANCING PROBLEM is given by the
following theorem.

Theorem 10. Let (G, c, w,F) be an instance of the SLACK BALANCING PROBLEM. Let
π : V (G)→ R with σπ(e) ≥ 0 for e ∈ F0. For F ∈ F define

Fπ :=

{
e ∈ F

∣∣∣∣σπ(e)

w(e)
minimal in F

}
.

and Eπ =
⋃
F∈F Fπ. Then π is an optimum solution if and only if there are no F ∈ F

and Xf ⊂ V (G) for f ∈ Fπ such that

f ∈ δ−(Xf ) for f ∈ Fπ,
σπ(e) > 0 for f ∈ Fπ, e ∈ δ+(Xf ) ∩ F0, and
σπ(e)

w(e)
>
σπ(f)

w(f)
for f ∈ Fπ, e ∈ δ+(Xf ) ∩ Eπ.

(11)

Proof: If there is an F ∈ F and Xf ⊂ V (G) for f ∈ Fπ with (11), then π is not
optimum, because setting π′(v) := π(v)− ε · |{f ∈ Fπ : v ∈ Xf}| for v ∈ V (G) for a
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sufficiently small ε > 0 increases the sorted vector (10) lexicographically (disproving
optimality).

Let now π, π′ : V (G)→ R be two vectors with (9) and (11), and suppose there exists
an f = (p, q) ∈ Eπ∪Eπ′ with σπ(f) 6= σπ′(f) and choose f such that min{σπ(f),σπ′ (f)}

w(f)

is minimum. Without loss of generality σπ(f) < σπ′(f). Let F ∈ F be the set containing
f . Then f ∈ Fπ: The contrary assumption would imply that there exists f ′ ∈ Fπ
with σπ(f

′)
w(f ′) < σπ(f)

w(f) . Then σπ′ (f
′)

w(f ′) = σπ(f
′)

w(f ′) < σπ(f)
w(f) < σπ′ (f)

w(f) and thus f 6∈ Fπ′ , a
contradiction.

For each f ′ = (p, q) ∈ Fπ let Xf ′ be the set of all vertices reachable from q via arcs
e ∈ F0 with σπ(e) = 0 or arcs e ∈ Eπ with σπ(e)

w(e) ≤
σπ(f)
w(f) .

Then there exists an f ′ = (p, q) ∈ F with p ∈ Xf ′ ; for otherwise (Xf ′)f ′∈F would
satisfy (11). Hence there is a q-p-path P that consists only of arcs e with σπ(e) ≤ σπ′(e).
Summation yields σπ(f) ≥ σπ′(f), a contradiction.

This proof is essentially due to [97]. The special case w ≡ 1, |F | = 1 ∀F ∈ F , was
considered by Albrecht [2], and the minimum balance problem (w ≡ 1, F0 = ∅,F =
{{e}|e ∈ E(G)) by Schneider and Schneider [85].

Now we show how to solve the SLACK BALANCING PROBLEM.

Theorem 11. The SLACK BALANCING PROBLEM can be solved in strongly polynomial
timeO(I ·(n3 log n+min{nm, n3}·log2 n log log n+nm logm)),where I := n+|{F ∈
F ; |F | > 1}|, or in pseudo-polynomial timeO(wmax(nm+n2 log n)+I(n log n+m))
for integral weights w : E(G)→ N with wmax := max{w(e)|e ∈ E \ F0}.

Sketch of proof: We may assume that (V (G), F0) contains no circuit of positive total
weight. Set w(e) := 0 for e ∈ F0 Analogously to the proof of Theorem 8, it is easy to
see that the maximum worst weighted slack is given by the negative maximum weighted
delay − c(E(C))

w(E(C)) of a cycle C in G with w(E(C)) > 0 and that arrival times exist that
achieve this value.

Thus, an optimum solution for the SLACK BALANCING PROBLEM can be obtained
by iteratively identifying the maximum weighted delay cycle C, resolving all intersecting
partitions, and and just preserving their respective minimum weighted slacks − c(E(C))

w(E(C))
in subsequent iterations. Algorithm 2 describes the overall procedure.

In each iteration, the edges e ∈ F ∩ E(C) determine the final worst weighted slack
min{σπ(f)/w(f) : f ∈ F} for their sets F . In lines 4–10 we fix the slack on all edges
in sets F ∈ F that intersect C. Note that the delay and weighting modifications just
preserve σπ(e)/w(e) ≥ λ? in future iterations, but prevent the slacks of these edges from
growing at the cost of less critical partitions.

If |V (C)| > 1, the critical cycle is contracted requiring adaption of incoming and
outgoing edge costs in lines 12–17. Contraction may leave loops e = (v, v) that can be
removed unless e ∈ F ∈ F with |F | > 1. In this case it is not clear whether e or another
edge from F will be the most critical edge in F . Thus, e must be kept, and may later lead
to critical cycles C that are loops.

In each iteration either a cycleC with |E(C)| > 1 is contracted or, ifC is a loop, a set
F with |F | > 1 is removed fromF . Thus there are at most I := n+|{F ∈ F ; |F | > 1}|
iterations of the while loop.

The dominating factor in each iteration is the computation of the maximum weighted
delay cycle. This can be done in strongly polynomial timeO(min{n3 log2 n+n2m logm,
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1: while (F 6= ∅) do
2: Compute the maximum weighted delay cycle C;
3: λ? ← c(C)

w(C) ;

/* Fixing (slack-preserving) delays in critical partitions */
4: for F ∈ F with F ∩ E(C) 6= ∅ do
5: for f ∈ F do
6: c(f) ← c(f) + λ?w(f);
7: w(f)← 0;
8: end for
9: F ← F \ {F};

10: end for

/* Critical cycle contraction*/
11: if |V (C)| > 1 then
12: for (x, y) ∈ δ−(V (C)) do
13: c(x, y)← c(x, y)− π(y);
14: end for
15: for (x, y) ∈ δ+(V (C)) do
16: c(x, y)← c(x, y) + π(x);
17: end for
18: Contract C;
19: Remove irrelevant loops from G;
20: end if
21: end while

Algorithm 2: Slack Balancing Algorithm

n3 log n+ n2m log2 n log log n}) by an adaption [34] of Megiddo’s [59] minimum ratio
cycle algorithm for non-simple graphs.

Alternatively, adopting the minimum balance algorithm of Young, Orlin and Tar-
jan [100] for our purpose, the cumulative running time for all cycle computations is
bounded by the bound for a single maximum weighted delay cycle computation, which
is O(wmax(mn+ n2 log n)}). This is the fastest algorithm for small wmax (especially if
w : R→ {0, 1}). Detailed proofs can be found in [36], and in [4] for unit weights.

In practice, the SLACK BALANCING PROBLEM can be solved much faster if we
replace π(w)−π(v)−c(e)

w(e) by min{Θ, π(w)−π(v)−c(e)} in (10), i.e. ignore slacks beyond
a certain threshold Θ, which we typically set to small positive values. In our three stage
clock scheduling approach optimizing only slacks below some threshold is necessary to
enable optimization in the next stage. Otherwise all arrival time relations would be fixed
already.

Positive slacks which have been obtained in a previous stage should not be decreased
in later stages. This can be modeled by increasing the corresponding delays and setting
their weights to 0, analogously to Algorithm 2. Time intervals for clock signal arrival
times also correspond to positive slack on arcs described in the last section. Time intervals
are maximized by the same algorithm.

By working on the timing graph — a direct representation of the timing analysis
constraints — rather than on the latch graph, we can consider all complicated timing
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constraints, different frequencies, etc. directly. Furthermore its size is linear in the size of
the netlist, while the latch graph can have a quadratic number of arcs and be much bigger.

On the other hand, in the timing graph model the vector of endpoints is optimized
instead the vector of longest paths as in the latch graph model. In an optimum solution
all paths entering the most critical cycle will obtain the most critical slack and give an
overall worse timing result. In our experiments it turned out to be most efficient to use
a combination of the latch graph — on most critical parts only — and the timing graph,
incorporating the advantages of both models.

Figure 22 shows a typical result on a leading-edge ASIC. The left-hand side shows the
slacks after timing-driven placement, but without clock skew scheduling, assuming zero
skew and estimating the on-chip variation on clock tree paths with 300 ps. The right-hand
side shows exactly the same netlist after clock skew scheduling and clock tree synthesis.
The slacks have been obtained with a full timing analysis as used for sign-off, also taking
on-chip variation into account. All negative slacks have disappeared. In this case we
improved the frequency of the most critical clock domain by 27%. The corresponding
clock tree is shown in Figure 25. It runs at 1.033 gigahertz [35], which is a very high
frequency for an ASIC design even today, several years later. Next we explain how to
construct such a clock tree, using the input of clock skew scheduling.

4.3. Clock tree synthesis

The input to clock tree construction is a set of sinks, a time interval for each sink, a set of
possible sources, a logically correct clock tree serving these sinks, a library of inverters
and other books that can be used in the clock tree, and a few parameters, most importantly
a slew target. The goal is to replace the initial tree by a logically equivalent tree which
ensures that all clock signals arrive within the specified time intervals.

Current ASIC chips contain several hundred clock tree instances with up to a million
sinks. For gigahertz frequencies manufacturing process variations already dissipate 20–
30% of the cycle time. Therefore clock trees have to be constructed very carefully,
especially when realizing the delay targets induced by the arrival time windows.

Traditionally the individual delay constraints were met by balancing wires (cf. Chao
et al. [21]). Theoretically very exact delay targets can be met by tuning wire delay. The
drawback of this approach is that it often requires a lot of wiring resources, the prescribed
wiring layout is hard to achieve in detailed routing (see Section 5.4), and due to increasing
wiring resistances in new technologies delays increase significantly.

We proposed a different approach [35], which assumes all inserted wires to be routed
shortest possible. Delays are balanced by the constructed tree topology and accurate gate
sizing.

First, the input tree is condensed to a minimal tree by identifying equivalent books
and removing buffers and inverter pairs. For simplicity we will assume here that the tree
contains no special logic and can be constructed with inverters only.

Next we do some preprocessing to determine the approximate distance to a source
from every point on the chip, taking into account that some macros can prevent us from
going straight towards a source.

The construction then proceeds in a bottom-up fashion (cf. Figure 23). Consider a
sink s whose earliest feasible arrival time is latest, and consider all sinks whose arrival
time intervals contain this point in time. Then we want to find a set of inverters that drives
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Figure 23. Different stages of a clock tree construction using BonnClock. The colored octagons indicate areas
in which inverters (current sinks) can be placed. The colors correspond to arrival times within the clock tree:
blue for signals close to the source, and green, yellow, and red for later arrival times. During the bottom-up
construction the octagons slowly converge to the source, here located approximately at the center of the chip.
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Figure 24. Computation of the feasible area for a predecessor of an inverter. From all points that are not too far
away from the placement area of the inverter (blue) we subtract unusable areas (e.g., those blocked by macros)
and points that are too far away from the source. The result (green) can again be represented as a union of
octagons.

at least s but maybe also some of the other sinks. For each inverter we have a maximum
capacitance which it can drive, and the goal is to minimize power consumption.

The input pins of the newly inserted inverters become new sinks, while the sinks
driven by them are removed from the current set of sinks. When we insert an inverter,
we fix neither its position nor its size. Rather we compute a set of octagons as feasible
positions by taking all points with a certain maximal distance from the intersection of the
sets of positions of its successors, and subtracting blocked areas and all points that are too
far away from a source (cf. Figure 24). This can be computed efficiently [33].

The inverter sizes are determined only at the very end after constructing the complete
tree. During the construction we work with solution candidates. A solution candidate is
associated with an inverter size, an input slew, a feasible arrival time interval for the input,
and a solution candidate for each successor. We prune dominated candidates, i.e. those for
which another candidate with the same input slew exists whose time interval contains the
time interval of the former. Thus the time intervals imply a natural order of the solution
candidates with a given input slew.

Given the set of solution candidates for each successor, we compute a set of solution
candidates for a newly inserted inverter as follows. For each input slew at the successors
we simultaneously scan the corresponding candidate lists in the natural order and choose
maximal intersections of these time intervals. For such a non-dominated candidate set we
try all inverter sizes and a discrete set of input slews and check whether they generate the
required input slews at the successors. If so, a new candidate is generated.

After an inverter is inserted but before its solution candidates are generated, the
successors are placed at a final legal position. It may be necessary to move other objects,
but with BonnPlace legalization (cf. Section 2.6) we can usually avoid moves with a
large impact on timing. There are some other features which pull sinks towards sources,
and which cause sinks that are ends of critical paths to be joined early in order to bound
negative timing effects due to on-chip variation.

The inverter sizes are selected at the very end by choosing a solution candidate at
the root. The best candidate (i.e. the best overall solution) with respect to timing (interval
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Figure 25. Gigahertz clock tree built by BonnClock based on the result of BonnCycleOpt shown in Figure 22.
Colors indicate different arrival times as in Figure 23. Each net is represented by a star connecting the source to
all sinks.

matching and tree latency) and power consumption is chosen. Due to discretizing slews,
assuming bounded RC delays, and legalization, the timing targets may be missed by a
small amount, in the order of 20 ps. But this impacts the overall timing result only if the
deviation occurs in opposite directions at the ends of a critical path.

4.4. Sink clustering

The overall power consumption of the clock trees is dominated by the bottom stage, where
80–90% of the power is consumed. Therefore this stage is very important.

The basic mathematical problem that we face here can be formulated as following
kind of facility location problem:
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SINK CLUSTERING PROBLEM

Instance: A metric space (V, c),
a finite set D ⊆ V (terminals/clients),
demands d : D → R+ (input pin capacitances),
facility opening cost f ∈ R+ (cost for inserting a driver circuit),
capacity u ∈ R+ (capacity limit for a facility).

Task: Find a partition D = D1∪̇ · · · ∪̇Dk and
Steiner trees Ti for Di (i = 1, . . . , k) with

c(E(Ti)) + d(Di) ≤ u for i = 1, . . . , k (12)

such that
∑k
i=1 c(E(Ti)) + kf is minimum.

The term c(E(Ti)) + d(Di) in (12) is the total load capacitance (wire plus input pin
capacitances) that must be served/driven by a facility/cell. The objective function models
power consumption. In our case, V is the plane and c is the `1-metric.

The sink clustering problem is closely related to the soft-capacitated facility location
problem. It contains the bin packing problem and the Steiner tree problem. The problem
can therefore not be approximated arbitrary well [57]:

Theorem 12. The SINK CLUSTERING PROBLEM has no (2−ε)-approximation algorithm
for any ε > 0 for any class of metrics where the Steiner tree problem cannot be solved
exactly in polynomial time.

Proof: Assume that we have a (2 − ε)-approximation algorithm for some ε >
0, and let S = {s1, . . . , sn}, k ∈ R+ be an instance of the decision problem
"Is there a Steiner tree for S with length ≤ k?". We construct
an instance of the SINK CLUSTERING PROBLEM by taking S as the set of terminals,
setting d(s) = 0 ∀s ∈ S, u = k and f = 2k

ε . Then the (2− ε)-approximation algorithm
computes a solution consisting of one facility if and only if there is a Steiner tree of length
≤ k. This implies that the above decision problem, and hence the Steiner tree problem,
can be solved in polynomial time.

The first constant-factor approximation algorithms for this problem were given by
Maßberg and Vygen [57]. One of them has a very fast running time of O(n log n) and is
described now.

Let F1 be a minimum spanning tree for (D, c) and e1, . . . , en−1 be the edges of F1 in
sorted order such that c(e1) ≥ . . . ≥ c(en−1). Let us further define a sequence of forests
by Fk := Fk−1 \ {ek−1} for k = 2, . . . , n. Exploiting the matroid property of forests
it is easy to see that each Fk, k = 1, . . . , n is a minimum weight spanning forest with
exactly k connected components. By a k-Steiner forest we mean a forest F with exactly
k connected components and D ⊆ V (F ). By extending the Steiner ratio 4 from minimum
spanning trees to minimum spanning forests we get:

Lemma 13. 1
αc(Fk) is a lower bound for the cost of a minimum weight k-Steiner forest,

where α is the Steiner ratio.

4The Steiner ratio of a metric space (V, c) is the worst-case ratio, over all terminal sets T , of the lengths of a
minimum spanning tree for (T, c) and a shortest Steiner tree for T in (V, c).
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We now compute a lower bound on the cost of an optimum solution. A feasible
k-Steiner forest is a k-Steiner forest where inequality (12) holds for each of the connected
components T1, . . . , Tk.

Let t′ be the smallest integer such that 1
αc(Ft′) + d(D) ≤ t′ · u. By inequality (12)

and Lemma 13 this is a lower bound for the number of facilities:

Lemma 14. t′ is a lower bound for the number of facilities in any feasible solution.

Let further t′′ be an integer in {t′, . . . , n} minimizing 1
αc(Ft′′) + t′′ · f.

Theorem 15. 1
αc(Ft′′) + t′′ · f is a lower bound for the cost of an optimal solution.

Denote Lr := 1
αc(Ft′′), and Lf := t′′ · f . Then Lr + Lf is a lower bound on the

cost of an optimum solution, and

Lr + d(D) ≤ Lf
u

f
. (13)

Based on these lower bound considerations the algorithm proceeds as follows. First it
computes a minimum spanning tree on (D, c). Second t′′ and Ft′′ are computed according
to Theorem 15. If a component T of Ft′′ violates (12) it must be decomposed into smaller
components.

Thus overloaded components (with c(E(T )) + d(Di) > u) are split. We do this in
such a way that at least u2 of the load will be removed whenever we introduce a new
component. This can be done by considering a minimal overloaded subtree and applying
the next-fit algorithm for bin packing. Splitting continues until no overloaded component
exists. The number of new components is at most 2

u times the load of T .
Thus the total cost of the solution that we obtain is at most c(Ft′′)+t′′f+ 2

u (c(Ft′′)+

d(D))f = αLr + Lf + 2f
u (αLr + d(D)). As f

uLr ≤ Lf by (13), we get [57]:

Corollary 16. The above algorithm computes a solution of cost at most (2α+ 1) times
the optimum in O(n log n) time, where α is the Steiner ratio.

[57] also proved better approximation guarantees for other metric spaces, but for
the rectilinear plane the above performance ratio of 4 is still the best known. However,
Maßberg [58] proved stronger lower bounds. In practice, the ratio of the cost of the
computed solution over a tight lower bound is typically less than 1.1. Furthermore,
an exchange and merge heuristic is used to improve the clustering further as a post-
optimization step. The above approximation algorithm also proves extremely fast in
practice; we used it on instances with up to one million sinks.

In general, non-overlapping time windows might restrict the clustering. In addition to
being computed by BonnCycleOpt, time windows occur naturally in upper levels of the
clock tree even with uniform windows at the leaves. An extension of the approximation
algorithm for the problem with time windows is given in [58]. By exploiting the time
intervals, which are single points only for the few most critical memory elements, and by
using an algorithm with provable performance guarantee the clock tree power consumption
could be reduced substantially.
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5. Routing

Due to the enormous instance sizes, most routers comprise at least two major parts, global
and detailed routing. Global routing defines an area for each net to which the search for
actual wires in detailed routing is restricted. As global routing works on a much smaller
graph, we can globally optimize the most important design objectives. Moreover, global
routing has another important function: decide for each placement whether a feasible
routing exists and if not, give a certificate of infeasibility.

5.1. The global routing graph

The global router works on a three-dimensional grid graph which is obtained by parti-
tioning the chip area into regions. For classical Manhattan routing this can be done by an
axis-parallel grid. In any case, these regions are the vertices of the global routing graph.
Adjacent regions are joined by an edge, with a capacity value indicating how many wires
of unit width can join the two regions. Each routing plane has a preference direction
(horizontal or vertical), and we remove edges orthogonal to this direction in the global
routing graph.

For each net we consider the regions that contain at least one of its pins. These
vertices of the global routing graph have to be connected by a Steiner tree. If a pin consists
of shapes in more than one region, we may assign it to one of them, say the one which
is closest to the center of gravity of the whole net, or by solving a group Steiner tree
problem.

The quality of the global routing depends heavily on the capacities of the global
routing edges. A rough estimate has to consider blockages and certain resources for
nets whose pins lie in one region only. These nets are not considered in global routing.
However, they may use global routing capacity. Therefore we route very short nets, which
lie in one region or in two adjacent regions, first in the routing flow, i.e. before global
routing. They are then viewed as blockages in global routing. Yet these nets may be
rerouted later in local routing if necessary.

Routing short nets before global routing makes better capacity estimates possible,
but this also requires more sophisticated algorithms than are usually used for this task.
We consider a vertex-disjoint paths problem for every set of four adjacent global routing
regions, illustrated in Figure 26. There is a commodity for each wiring plane, and we try
to find as many paths for each commodity as possible. Each path may use the plane of its
commodity in preference direction and adjacent planes in the orthogonal direction.

An upper bound on the total number of such paths can be obtained by considering
each commodity independently and solving a maximum flow problem. However, this is
too optimistic and too slow. Instead we compute a set of vertex-disjoint paths (i.e., a lower
bound) by a very fast multicommodity flow heuristic [62]. It is essentially an augmenting
path algorithm but exploits the special structure of a grid graph. For each augmenting
path it requires only O(k) constant-time bit pattern operations, where k is the number of
edges orthogonal to the preferred wiring direction in the respective layer. In practice, k is
less than three for most paths.

This very fast heuristic finds a number of vertex-disjoint paths in the region of 90%
of the (weak) max-flow upper bound. For a complete chip with about one billion paths it
needs 5 minutes of computing time whereas a complete max-flow computation with our
implementation of the Goldberg-Tarjan algorithm would need more than a week.
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Figure 26. An instance of the vertex-disjoint paths problem for estimating global routing capacities. Dashed
lines bound global routing regions. Here we show four wiring planes, each with a commodity (shown in different
colors), in alternating preference directions.

Please note that this algorithm is used only for a better capacity estimation, i.e. for
generating accurate input to the main global routing algorithm. However, this better
capacity estimate yields much better global routing solutions and allows the detailed
router to realize these solutions.

5.2. Classical global routing

In its simplest version, the global routing problem amounts to packing Steiner trees in a
graph with edge capacities. A fractional relaxation of this problem can be efficiently solved
by an extension of methods for the multicommodity flow problem. However, the approach
does not consider today’s main design objectives which are timing, signal integrity, power
consumption, and manufacturing yield. Minimizing the total length of all Steiner trees
is no longer important. Instead, minimizing a weighted sum of the capacitances of all
Steiner trees, which is equivalent to minimizing power consumption, is an important
objective. Delays on critical paths also depend on the capacitances of their nets. Wire
capacitances can no longer be assumed to be proportional to the length, since coupling
between neighboring wires plays an increasingly important role. Small detours of nets
are often better than the densest possible packing. Spreading wires can also improve the
yield.

50



Our global router is the first algorithm with a provable performance guarantee which
takes timing, coupling, yield, and power consumption into account directly. Our algorithm
extends earlier work on multicommodity flows, fractional global routing, the min-max
resource sharing problem, and randomized rounding.

Let G be the global routing graph, with edge capacities u : E(G)→ R+ and lengths
l : E(G)→ R+. Let N be the set of nets. For each N ∈ N we have a set YN of feasible
Steiner trees. The set YN may contain all delay-optimal Steiner trees of N or, in many
cases, it may simply contain all possible Steiner trees for N in G. Actually, we do not
need to know the set YN explicitly. The only assumption which we make is that for each
N ∈ N and any ψ : E(G)→ R+ we can find a Steiner tree Y ∈ YN with

∑
e∈E(Y ) ψ(e)

(almost) minimum sufficiently fast. This assumption is justified since in practical instances
almost all nets have less than, say, 10 pins. We can use a dynamic programming algorithm
for finding an optimum Steiner tree for small nets and a fast approximation algorithm for
others. With w(N, e) ∈ R+ we denote the width of net N at edge e. A straightforward
integer programming formulation of the classical global routing problem is:

min
∑
N∈N

∑
e∈E(G)

l(e)
∑

Y ∈YN :e∈E(Y )

xN,Y

s.t.
∑
N∈N

∑
Y ∈YN :e∈E(Y )

w(N, e)xN,Y ≤ u(e) (e ∈ E(G))

∑
Y ∈YN

xN,Y = 1 (N ∈ N )

xN,Y ∈ {0, 1} (N ∈ N , Y ∈ YN )

Here the decision variable xN,Y is 1 iff the Steiner tree Y is chosen for net N . The
decision whether this integer programming problem has a feasible solution is already
NP-complete. Thus, we relax the problem by allowing xN,Y ∈ [0, 1]. Raghavan and
Thompson [73,74] proposed solving the LP relaxation first, and then using randomized
rounding to obtain an integral solution whose maximum capacity violation can be bounded.
Although the LP relaxation has exponentially many variables, it can be solved in practice
for moderate instance sizes since it has only |E(G)|+ |N |many constraints. Therefore all
but |E(G)|+ |N | variables are zero in an optimum basic solution. However, for current
complex chips with millions of nets and edges, all exact algorithms for solving the LP
relaxation are far too slow.

Fortunately, there exist combinatorial fully polynomial approximation schemes,
i.e. algorithms that compute a feasible solution of the LP relaxation which is within a
factor of 1 + ε of the optimum, and whose running time is bounded by a polynomial in
|V (G)| and 1

ε , for any accuracy ε > 0. If each net has exactly two pins, YN contains all
possible paths connecting N , and w ≡ 1, the global routing problem reduces to the edge-
disjoint paths problem whose fractional relaxation is the multicommodity flow problem.
Shahrokhi and Matula [87] developed the first fully polynomial approximation scheme for
multicommodity flows. Carden, Li and Cheng [20] first applied this approach to global
routing, while Albrecht [1] applied a modification of the approximation algorithm by Garg
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adjacent
wire

wire

silicon substrate

Figure 27. The capacitance of a net consists of area capacitance (green) between the undersurface of the wire
and the substrate, proportional to length times width, fringing capacitance (blue) between side face of the wire
and substrate, proportional to length, and coupling capacitance (red), proportional to length if adjacent wires
exist. Note that the wire height is fixed within each plane, while the width varies.

and Könemann [32]. However, these approaches did not consider the above-mentioned
design objectives, like timing, power, and yield.

5.3. Advanced global routing

The power consumption of a chip induced by its wires is proportional to the weighted
sum of all capacitances (see Figure 27), weighted by switching activities. The coupling
capacitance depends on the distance between adjacent wires. In older technologies cou-
pling capacitances were quite small and therefore could be ignored. In deep submicron
technologies coupling matters a lot.

To account for this in global routing, we assign a certain space to each edge e and
each net N using this edge. We write s(e,N) ≥ 0 for the extra space that we assign in
addition to the width w(e,N). The contribution of edge e to the total capacitance of N is
then a convex function of s(e,N).

Similarly to minimizing power consumption based on the above capacitance model,
we can optimize yield by replacing capacitance by “critical area”, i.e. the sensitivity of
a layout to random defects [63]. Such random defects are caused by small particles that
contaminate the chip during lithography. They can either disconnect a wire or connect
two wires to a short.

Moreover, we can also consider timing restrictions. This can be done by excluding
from the set YN all Steiner trees with large detours, or by imposing upper bounds on the
weighted sums of capacitances of nets that belong to critical paths. For this purpose, we
first do a static timing analysis under the assumption that every net has some expected
capacitance. The set YN will contain only Steiner trees with capacitance below this
expected value. We enumerate all paths which have negative slacks under this assumption.
We compute the sensitivity of the nets of negative slack paths to capacitance changes,
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and use these values to translate the delay bound to appropriate bounds on the weighted
sum of capacitances for each path. To compute reasonable expected capacitances we can
apply weighted slack balancing (cf. Section 4.2) using delay sensitivity and congestion
information.

Altogether we get a familyM of subsets of N with N ∈M, bounds U :M→ R+

and convex functions g(e,N,M) : R+ → R+ for N ∈M ∈M and e ∈ E(G). We also
treat the objective function as a constraint (we can apply binary search to compute the
optimum value approximately, but in practice we can guess an excellent bound).

With these additional assumptions and this notation we can generalize the original
integer programming formulation of the global routing problem to:

GENERAL GLOBAL ROUTING PROBLEM

Instance: • An undirected graph G with edge capacities u : E(G)→ R+,
• a set N of nets and a set YN of feasible Steiner trees for each net N ,
• wire widths w : E(G)×N → R+,
• A familyM of subsets of N with bounds U : M→ R+ and convex

functions g(e,N,M) : R+ → R+ for N ∈M ∈M and e ∈ E(G).

Task: Find a Steiner tree YN ∈ YN and numbers s(e,N) ≥ 0 for each N ∈ N
and e ∈ E(YN ), such that

•
∑
N∈N :e∈E(YN )(w(e,N) + s(e,N)) ≤ u(e) for each edge e ∈ E(G),

•
∑
N∈M

∑
e∈E(YN ) g(e,N,M)(s(e,N)) ≤ U(M) for each M ∈M.

This general formulation was proposed by [95]. Reformulating it, we look for a
feasible solution (λ, x, s) to the following nonlinear optimization problem, where x is
integral and λ = 1. As this is hard, we first solve the following fractional relaxation
approximately and then apply randomized rounding to obtain an integral solution.

minλ s.t. ∑
Y ∈YN

xN,Y = 1 (N ∈ N )

∑
N∈M

( ∑
Y ∈YN

xN,Y

∑
e∈E(Y )

g(e,N,M)(s(e,N))

)
≤ λU(M) (M ∈M)

∑
N∈N

( ∑
Y ∈YN :e∈E(Y )

xN,Y (w(e,N) + s(e,N))

)
≤ λu(e) (e ∈ E(G))

s(e,N) ≥ 0 (e ∈ E(G), N ∈ N )

xN,Y ≥ 0 (N ∈ N , Y ∈ YN )

(14)

This can be transformed to an instance of the MIN-MAX RESOURCE SHARING

PROBLEM, defined as follows. Given finite sets R of resources and N of customers,
an implicitly given convex set BN , called block, and a convex resource consumption
function gN : BN → RR+ for every N ∈ N , the task is to find bN ∈ BN (N ∈ N )
approximately attaining λ∗ := inf{maxr∈R

∑
N∈N (gN (bN ))r | bN ∈ BN (N ∈ N )}.

In the general problem formulation we have access to the sets BN only via oracle functions
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fN : RR+ → BN , called block solvers, which for N ∈ N and y ∈ RR+ return an element
bN ∈ BN with y>gN (bN ) ≤ σ infb∈BN y

>gN (b). Here σ ≥ 1 is a given constant.
In our application the customers are the nets, and the resources are the elements of

E(G) ∪M. We can define

BN := conv({(χ(Y ), s) | Y ∈ YN , s ∈ RE(G)
+ , se = 0 for e /∈ E(Y )}),

where χ(Y ) ∈ {0, 1}E(G) denote the edge-incidence vector of a Steiner tree Y . The
functions gN are then given by

(gN (x, s))e := (xew(e,N) + se)/u(e) (e ∈ E(G))
(gN (x, s))M :=

(∑
e∈E(G):xe>0 xeg(e,N,M)(se/xe)

)
/U(M) (M ∈M)

(15)

for each N ∈ N and (x, s) ∈ BN .
We showed in [65] that the block solvers can be implemented by an approximation

algorithm for the Steiner tree problem in weighted graphs. Then they always return an
extreme point b ∈ BN , corresponding to a single Steiner tree, which we denote by Yb.

Algorithm 3 solves the MIN-MAX RESOURCE SHARING PROBLEM, and hence (14),
approximately. It is a primal-dual algorithm which takes two parameters 0 < ε < 1 and
t ∈ N. They control the approximation guarantee and running time.

The algorithm proceeds in t iterations where it calls the block solver for every net
based on current resource prices. After each individual choice the prices are updated.

/* Initialization */
yr ← 1 for r ∈ R
xN,b ← 0 for N ∈ N , b ∈ BN
XN ← 0 for N ∈ N
/* Main Loop */
for p := 1 to t do:

for N ∈ N do:
while XN < p do:

/* Call block solver */
b← fN (y).
a← gN (b).
/* Update variables */
ξ ← min{p−XN , 1/max{ar | r ∈ R}}.
xN,b ← xN,b + ξ and XN ← XN + ξ.
/* Update prices */
for r ∈ R do:
yr ← yre

εξar .
/* Take Average */
xN,b ← 1

txN,b for N ∈ N and b ∈ BN .

Algorithm 3: Resource Sharing Algorithm

Let optN (y) := infb∈BN y
>gN (b). The analysis of the algorithm relies on weak

duality: any set of prices yields a lower bound on the optimum:
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Lemma 17. Let y ∈ RR+ be some cost vector with 1>y 6= 0. Then∑
N∈N optN (y)

1>y
≤ λ∗.

Proof: Let δ > 0 and (bN ∈ BN )N∈N a solution with maxr∈R
∑
N∈N (gN (bN ))r <

(1 + δ)λ∗. Then∑
N∈N optN (y)

1>y
≤
∑
N∈N y

>gN (bN )

1>y
<

(1 + δ)λ∗1>y

1>y
= (1 + δ)λ∗.

The RESOURCE SHARING ALGORITHM yields xN,b ≥ 0 for all b ∈ BN with∑
b∈BN xN,b = 1. Hence we have a convex combination of vectors in BN for each

N ∈ N . To estimate the quality of the solution we prove two lemmas. Let y(p,i) denote y
at the end of the i-th innermost iteration and kp the total number of innermost iterations
within the p-th outer iteration. We call the outer iterations phases. Let y(p) denote y at the
end of phase p. Similar for the other variables in the algorithm.

Lemma 18. Let (x, y) be the output of the RESOURCE SHARING ALGORITHM. Then

max
r∈R

∑
N∈N

(
gN

( ∑
b∈BN

xN,bb
))
r
≤ max

r∈R

∑
N∈N

∑
b∈BN

xN,b(gN (b))r ≤
1

εt
ln
(
1
>y
)
.

Proof: The first inequality follows from the convexity of the functions gN . For the
second inequality, note that for r ∈ R:

∑
N∈N

∑
b∈BN

xN,b(gN (b))r =
1

t

t∑
p=1

kp∑
i=1

ξ(p,i)(a(p,i))r =
1

εt
ln y(t)r ≤ 1

εt
ln
(
1
>y(t)

)
.

Lemma 19. Let σ ≥ 1 such that y>gN (fN (y)) ≤ σoptN (y) for all y. Let ε > 0 and
ε′ := (eε − 1)σ. If ε′λ∗ < 1, then

1
>y(t) ≤ |R|etε

′λ∗/(1−ε′λ∗).

Proof: We will consider the term 1
>y(p) for all phases p. Initially we have 1>y(0) =

|R|. We can estimate the increase of the resource prices as follows:∑
r∈R

y(p,i)r =
∑
r∈R

y(p,i−1)r eεξ
(p,i)(a(p,i))r

≤
∑
r∈R

y(p,i−1)r + (eε − 1)
∑
r∈R

y(p,i−1)r ξ(p,i)(a(p,i))r,
(16)

because ξ(p,i)(a(p,i))r ≤ 1 for r ∈ R, and ex ≤ 1 + eε−1
ε x for 0 ≤ x ≤ ε.

Moreover,
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∑
r∈R

y(p,i−1)r (a(p,i))r ≤ σ optN(p,i)(y(p,i−1)). (17)

Using (16), (17), the monotonicity of y, the fact
∑
i:N(p,i)=N ξ

(p,i) = 1 for all N ,
and Lemma 17 we get

1
>y(p) ≤ 1

>y(p−1) + (eε − 1)σ

kp∑
i=1

ξ(p,i)optN(p,i)(y(p,i−1))

≤ 1
>y(p−1) + ε′

∑
N∈N

optN (y(p))

≤ 1
>y(p−1) + ε′λ∗1>y(p)

and hence

1
>y(p) ≤ 1

>y(p−1)

1− ε′λ∗
.

Combining this with 1>y(0) = |R| and 1 + x ≤ ex for x ≥ 0 we get, if ε′λ∗ < 1:

1
>y(t) ≤ |R|

(1− ε′λ∗)t
= |R|

(
1 +

ε′λ∗

1− ε′λ∗

)t
≤ |R|etε

′λ∗/(1−ε′λ∗).

Combining Lemmas 18 and 19 we get:

Theorem 20. Let λ∗ be the optimum LP value, λ∗ ≥ 1
2 , σλ∗ ≤ 5

2 , and 0 < ε ≤ 1
3 , and

tλ∗ > log |R|. Then the algorithm computes a feasible solution whose value differs from
the optimum by at most a factor

2 ln |R|
εt

+ σ
(eε − 1)

ε(1− 5
2 (eε − 1))

.

By choosing ε and t appropriately, we get a (σ+ω)-optimal solution inO(ω−2 ln |R|)
iterations, for any ω > 0.

Although these assumptions on λ∗ and σ are realistic in practice, one can also get rid
of them and obtain a (σ + ω)-optimal solution with O(log |R|((|N |+ |R|) log log |R|+
(|N |+ |R|)ω−2)) oracle calls in general [65].

Moreover, we proposed several speedup techniques and an extremely efficient parallel
implementation [64,65]. This makes the approach applicable even on the largest VLSI
instances. One can obtain a solution which is provably within a few percent of the optimum
for an instance with millions of nets and constraints in a few hours of computing time.

The algorithm always gives a dual solution and can therefore, by Lemma 17, give a
certificate of infeasibility if a given placement is not routable. We also showed how to
make randomized rounding work [95,65].

This approach is quite general. It allows us to add further constraints. Here we have
modeled timing, yield, and power consumption, but we may think of other constraints if
further technological or design restrictions come up.

56



Figure 28. A typical global routing congestion map. Each edge corresponds to approximately 10x10 global
routing edges (and to approximately 1 000 detailed routing channels). Red, orange, yellow, green, and white
edges correspond to an average load of approximately 90–100%, 70–90%, 60–70%, 40–60%, and less than 40%.

Figure 28 shows a typical result of global routing. In the dense (red and orange)
areas the main challenge is to find a feasible solution, while in other areas there is room
for optimizing objectives like power or yield. Experimental results show a significant
improvement over previous approaches which optimized net length and number of vias,
both in terms of power consumption and expected manufacturing yield [63,64].

We conclude this section by pointing out that this problem is not restricted to VLSI
design. It is in fact equivalent to routing traffic flow, with hard capacity bounds on edges
(streets), without capacity bounds on vertices, with flows statically repeated over time,
with bounds on weighted sums of travel times. Algorithm 3 can then be interpreted as
selfish routing with taxes that depend exponentially on congestion.
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5.4. Detailed routing

The task of detailed routing is to determine the exact layout of the metal realiza-
tions of the nets. Efficient data structures are used to store all metal shapes and al-
low fast queries. Grid-based routers define routing tracks (and minimum distances)
and work with a detailed routing graph G which is an incomplete three-dimensional
grid graph, i.e. V (G) ⊆ {xmin, . . . , xmax} × {ymin, . . . , ymax} × {1, . . . , zmax} and
((x, y, z), (x′, y′, z′)) ∈ E(G) only if |x− x′|+ |y − y′|+ |z − z′| = 1.

The z-coordinate models the different routing layers of the chip and zmax is typically
around 10–12. We can assume without loss of generality that the x- and y-coordinates
correspond to the routing tracks; typically the number of routing tracks in each plane, and
hence xmax − xmin and ymax − ymin, is in the order of magnitude of 105, resulting in
a graph with more than 1011 vertices. The graph is incomplete because some parts are
reserved for internal circuit structures or power supply, and some nets may have been
routed earlier.

To find millions of vertex-disjoint Steiner trees in such a huge graph is very chal-
lenging. Thus we decompose this task, route the nets and even the two-point connections
making up the Steiner tree for each net individually. Then the elementary algorithmic task
is to determine shortest paths within the detailed routing graph (or within a part of it, as
specified by global routing).

Whereas the computation of shortest paths is probably the most basic and well-studied
algorithmic problem of discrete mathematics [52], the size ofG and the number of shortest
paths that have to be found concurrently makes the use of textbook versions of shortest
path algorithms impossible. The basic algorithm for finding a shortest path connecting
two given vertices in a digraph with nonnegative arc weights is Dijkstra’s algorithm.
Its theoretically fastest implementation, with Fibonacci heaps, runs in O(m + n log n)
time, where n and m denote the number of vertices and edges, respectively [30]. For
our purposes this is much too slow. Various strategies are applied to speed up Dijkstra’s
algorithm.

Since we are not just looking for one path but have to embed millions of disjoint
trees, the information provided by global routing is most important. For each two-point
connection global routing determines a corridor essentially consisting of the global routing
tiles to which this net was assigned in global routing. If we find a shortest path for the two-
point connection within this corridor, the capacity estimates used during global routing
approximately guarantee that all desired paths can be realized disjointly. Furthermore,
we get a dramatic speedup by restricting the path search to this corridor, which usually
represents a very small fraction of the entire routing graph.

The second important factor speeding up our shortest path algorithm is the way
in which distance information is stored. Whereas Dijkstra’s algorithm labels individual
vertices, we consider intervals of consecutive vertices that are similar with respect to their
usability and their distance properties. Since the layers are assigned preferred routing
directions, the intervals are chosen parallel to these. By the similarity of the vertices in
one interval we mean that their distance properties can be encoded more efficiently than
by storing numbers for each individual vertex. If e.g. the distance increases by one unit
from vertex to vertex we just need to store the distance information for one vertex and the
increment direction. Hetzel’s version of Dijkstra’s algorithm [38], generalized by [68] and
[41], labels intervals instead of vertices, and its time complexity therefore depends on the
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Figure 29. An instance of the shortest paths problem with unit edge weights. We look for a shortest path from
the big dark green vertex in the left to the big red vertex in the right part. The figures show Dijkstra’s algorithm
without future costs (top left), with `1-distances as future costs (top right), and with improved future costs
(bottom right). The improved future costs are based on distances in a grid graph arising by filling small holes
(blue vertices and edges in the bottom left). Points labeled by Dijkstra’s algorithm are marked light green. The
running time is roughly proportional to the number of labeled points (93 versus 51 versus 36).

number of intervals, which is typically about 50 times smaller than the number of vertices.
A sophisticated data structure for storing the intervals and answering queries very fast is
the basis of this algorithm and also of its efficient shared-memory parallelization.

The last factor speeding up the path search is the use of a future cost estimate, which
is a lower bound on the distance of vertices to a given target set of vertices. This is a
well-known technique. Suppose we are looking for a path from s to t in G with respect to
edge weights c : E(G)→ R+, which reflect higher costs for vias and wires orthogonal
to the preferred direction and can also be used to find optimal rip-up sets. Let l(x) be a
lower bound on the distance from x to t (the future cost) for any vertex x ∈ V . Then we
may apply Dijkstra’s algorithm to the costs c′(x, y) := c({x, y})− l(x) + l(y). For any
s-t-path P we have c′(P ) = c(P ) − l(s) + l(t), and hence shortest paths with respect
to c′ are also shortest paths with respect to c. If l is a good lower bound, i.e. close to
the exact distance, and satisfies the natural condition l(x) ≤ c({x, y}) + l(y) for all
{x, y} ∈ E(G), then this results in a significant speedup.

If the future cost estimate is exact, our procedure will only label intervals that contain
vertices lying on shortest paths.

Clearly, improving the accuracy of the future cost estimate improves the running time
of the path search and there is a tradeoff between the time needed to improve the future
cost and the time saved during path search. Hetzel [38] used `1-distances as future cost
estimates. In [68] we showed how to obtain and use much better estimates efficiently by
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Figure 30. A system on a chip designed in 2006 with BonnTools. This 90nm design for a forthcoming IBM
server has more than 5 million circuits and runs with frequencies up to 1.5 GHz. Colors reflect the structure of
the underlying logic blocks.

computing distances in a condensed graph whose vertices correspond to rectangles. This
leads to significant reductions of the running time as illustrated by Figure 29.

6. Conclusion

We have demonstrated that mathematics can yield better solutions for leading-edge chips.
Several complete microprocessor series (cf., e.g., [28,48]) and many leading-edge ASICs
(cf., e.g., [49,35]) have been designed with BonnTools. Many additional ones are in the
design centers at the time of writing. Figures 30 and 31 show examples of chips that have
been and are currently designed by IBM with BonnTools.

Chip design is inspiring a great deal of interesting work in mathematics. Indeed, most
classical problems in combinatorial optimization, and many new ones, have been applied
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Figure 31. A vector processing unit currently designed with BonnTools. This 22nm prototype runs with a
frequency of 4.7 GHz.

to chip design. Some algorithms originally developed for VLSI design automation are
applied also in other contexts.

However, there remains a lot of work to do. Exponentially increasing instance sizes
continue to pose challenges. Even some classical problems (e.g., logic synthesis) have
no satisfactory solution yet, and future technologies continuously bring new problems.
Yet we strongly believe that mathematics will continue to play a vital role in facing these
challenges.
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