
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

An approximation algorithm for threshold voltage
optimization

SIAD DABOUL, STEPHAN HELD, JENS VYGEN, AND SONJA WITTKE,
University of Bonn, Germany

We present a primal-dual approximation algorithm for minimizing the leakage power of an integrated circuit

by assigning gate threshold voltages. While most existing techniques do not provide a performance guarantee,

we prove an upper bound on the power consumption.

The algorithm is practical and works with an industrial sign-off timer. It can be used for post-routing power

reduction or for optimizing leakage power throughout the design flow.

We demonstrate the practical performance on recent microprocessor units. Our implementation obtains

significant leakage power reductions of up to 8% on top of one of the most successful algorithms for gate sizing

and threshold voltage optimization. After timing-aware global routing we achieve leakage power reductions

of up to 34%.

CCS Concepts: • Hardware→ Physical synthesis; Circuits power issues;

Additional Key Words and Phrases: Vt optimization; leakage power; time-cost tradeoff; set cover

ACM Reference Format:
Siad Daboul, Stephan Held, Jens Vygen, and Sonja Wittke. 2018. An approximation algorithm for threshold

voltage optimization. 1, 1 (June 2018), 15 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Threshold voltage (Vt) optimization is a crucial step in VLSI design. It is often combined with

simultaneous sizing as in recent sensitivity-based [8, 9] or Lagrangian relaxation approaches

[5, 15], among which [5] reported the best results on the ISPD 2012 and 2013 gate sizing contest

benchmarks. Its integration into an industrial design environment [14, 15] also achieved substantial

power reductions on industrial designs. However, threshold voltage optimization finds its individual

application in post-routing power reduction [1, 13]. Most modern cell libraries offer different Vt
choices with the same footprint. Thus, the voltage threshold of a gate can be changed without

requiring routing changes.

Overuse of low Vt gates leads to a large leakage power consumption, which can be prohibitive.

In contrast to the size of a gate which has an approximately linear influence on the power, the

static power consumption usually depends exponentially on the used Vt level of a gate. The static
leakage of an inverter in the library of the ISPD 2013 gate sizing contest with respect to the chosen

Vt level and size is illustrated in Figure 1.

Typically there are 10–20 different gate sizes available. In contrast to this the Vt optimization

problem is highly discrete, providing only 2–4 alternative Vt levels. The large differences in the

Author’s address: Siad Daboul, Stephan Held, Jens Vygen, and Sonja Wittke,

University of Bonn, Research Institute for Discrete Mathematics, Lennéstr. 2, Bonn, Germany, 53113, {daboul,held,vygen}@

dm.uni-bonn.de.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2018 Copyright held by the owner/author(s).

XXXX-XXXX/2018/6-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: June 2018.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

:2 Siad Daboul, Stephan Held, Jens Vygen, and Sonja Wittke

1

4

16

64

256

1024

4096

1 2 4 8 16 32 64 128

P
st
at
ic
i
n
µW

Area

low Vt
medium Vt

high Vt

Fig. 1. The cell library for an inverter from the ISPD 2013 contest (logarithmic scales). The specific leakage
numbers are artificial, but the picture is structurally consistent with industrial gate libraries.

leakage power consumption of the individual threshold implementations make the problem difficult

in practice.

Shah et al. [16] propose a continuous formulation for simultaneous gate sizing andVt assignment,

in which theVt levels are always snapping to integral values. However, the relaxation is not convex

and is not known to be efficiently solvable with any useful approximation guarantee.

Liu and Hu [11] combine Lagrangian relaxation with dynamic programming for rounding to a

discrete solution, resolving inconsistencies due to reconvergent paths heuristically. This approach

was later refined in by Ozdal, Burns, and Hu[12].

Algorithms for pure threshold voltage optimization include the conjugate gradient method

applied to a certain continuous problem relaxation [1] or greedy algorithms [13].

The problem of choosing aVt level for each gate while satisfying the timing constraints is similar

to the discrete time-cost tradeoff (TCT) problem in directed graphs. Here we are given an acyclic

digraph where every edge has a set of possible execution times with associated costs. The task is to

choose a realization for every edge such that the maximum execution time of a path respects some

delay bound and the total cost is minimized.

Grigoriev and Woeginger showed that unless P=NP the discrete time-cost tradeoff problem

cannot be approximated by a smaller factor than the vertex cover problem [7], which cannot be

approximated by a factor 1.36 unless P=NP [3]. Svensson [18] showed that under the unique games

conjecture there is not even a constant-factor approximation algorithm.

Skutella found a bicriteria (α , β)-approximation algorithm which, given a fixed parameter 0 <
µ < 1, computes a solution such that the optimum cost is exceeded at most by a factor of α = 1

1−µ
and the deadline D is exceeded by a factor of at most β = 1

µ in polynomial time [17]. This gives a

deterministic (2, 2)-approximation. He also showed how to obtain a randomized solution with an

expected guarantee of (γ ,γ), where γ = e

e−1
≈ 1.58. Exceeding the deadline so much is of course

out of the question in chip design.

2 OUR CONTRIBUTION
We present a new global algorithm for the problem of assigning a Vt level to each gate. Iteratively

trying to improve the most critical gates is a common approach that is used systematically or as

, Vol. 1, No. 1, Article . Publication date: June 2018.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

An approximation algorithm for threshold voltage optimization :3

vertices in Vin

vertices in Vout

edges

Fig. 2. An example of a timing graph. The blue gates indicate how the graph arises from the underlying chip.
Edges of each Eд have the same color.

a refinement in many gate sizing & Vt assignment algorithms [4, 5, 8, 9]. Our algorithm uses the

same idea but guides the iterative refinement with a global primal-dual cost function. This allows

us to prove an a-priori bound on the leakage power consumed by our solution.

For the first time we obtain an a-priori approximation guarantee for the problem of minimizing

the power consumption while maximizing the total negative slack (TNS) or the true total negative

slack (TTNS) [14] (see also Section 5.1) of a design. Our result also translates to the TCT problem,

where it provides the best known approximation guarantee for bounded path lengths.

Our algorithm has the following characteristics:

• We formulate theVt optimization problem as a set cover problem with an exponentially large

universe.

• An approximate solution to this set cover problem can be computed efficiently by a primal-

dual algorithm based on Bar-Yehuda and Even [2].

• We prove that the acceleration cost of our solution never exceeds the optimum by a factor

more than k , where k is the maximum number of gates on a signal path.

• The algorithm computes a lower bound on the best possible solution which we use to evaluate

our results.

• Our algorithm respects the discrete nature of the problem. We do not make any convexity

assumptions and do not solve a continuous relaxation.

• We do not relax timing constraints but achieve best possible solutions with respect to timing.

• We demonstrate the practical performance of our algorithm. On top of a highly optimized

gate sizing and Vt assignment computed by a state-of-the-art algorithm [5, 15], we obtain

additional leakage power reductions of up to 8%.

• Our algorithm is footprint-preserving and can be applied after detailed routing late in the

design flow.

• After running a timing-aware global routing algorithm, we can reduce the leakage power

consumption even by up to 34%.

The remainder of this paper is organized as follows. In Section 3, we give a formal problem

definition. Then in Section 4, we present the new approximation algorithm together with an

example and a theoretical quality analysis. In Section 5, we shortly present further variants of the

problem and algorithm, and a four-step flow for Vt assignment. Finally, we present experimental

results in Section 6 and conclusions in Section 7.

, Vol. 1, No. 1, Article . Publication date: June 2018.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

:4 Siad Daboul, Stephan Held, Jens Vygen, and Sonja Wittke

3 PRELIMINARIES
In the following we will assume that an instance can be modeled by a directed acyclic graph

G = (V ,E) (the timing graph), a set of gates G, and a set of Vt levels {1, . . . , z}. We call vertices

v ∈ V without entering edges input vertices v ∈ Vin; analogously we define output vertices Vout.
Each gate д ∈ G is represented in G by a subset Eд of edges of G where Eд ∩ Eд′ = ∅ for any pair

of different gates д,д′ ∈ G. A sample timing graph is shown in Figure 2. For easier notation we

assume that every gate has some implementation for each Vt level in {1, . . . , z}. Here, 1 is the

fastest Vt level (lowest Vt) and z the slowest one (highest Vt).
A Vt assignment is a map φ : G → {1, . . . , z}. We denote the assignment that maps every gate

to the fastest implementation by 1. The delay of a timing edge e ∈ E depends on the assignment φ
and is denoted by dφ : E → R≥0. For a path P in G we define dφ (P) =

∑
e ∈E(P) dφ (e). The power of

a gate is given by a function power(д, i), where i ∈ {1, . . . , z} specifies the chosen Vt level.
For a path P , its delay boundT , and assignment φ, the slack is defined by slack(P ,φ) = T −dφ (P).

For pins v ∈ V and edges e ∈ E we denote by slack(v,φ) and slack(e,φ) the minimum slack of a

path that contains v and e , respectively. The total negative slack (TNS) is the sum of all negative

endpoint slacks

TNS(φ) =
∑

v ∈Vout

min{0, slack(v,φ)}.

We consider the following Vt optimization problem:

minimize

∑
д∈G

power(д,φ(д))

subject to φ : G → {1, . . . , z} (1)

TNS(φ) = TNS(1).

We will also discuss some variants of this problem in Section 5.

4 Vt OPTIMIZATION ALGORITHM
We will now describe our proposed Vt optimization algorithm (Algorithm 1). We start by assigning

every gate д ∈ G to the highest available Vt level φ(д) = z. Over the course of the algorithm we

will maintain a reduced cost function cд which is guiding the optimization globally. Initially, cд is

given by the additional cost needed to accelerate gate д to the next lower Vt level

cд = power(д, z − 1) − power(д, z).

Then we proceed to iteratively accelerate a path P that violates the timing constraints. We do

this by accelerating the cheapest gate д∗ on P with respect to the reduced cost function cд . Note
that this accelerates all paths through д, not only P . We then reduce the values cд for every gate on

P by exactly cд∗ . This process is iterated until the timing constraints are met.

Note that our particular reduced cost update is important for achieving globally good solutions.

If a gate occurs frequently on some violated path P , it becomes more attractive to be accelerated due

to its lowered cost. The cost update is a core ingredient for proving the approximation guarantee

of our algorithm in Section 4.2, and also needed for good practical results as the following example

demonstrates.

4.1 Example
Consider the instance in Figure 3, where an inverter drives K ≫ 1 other inverters (the instance

can be easily adjusted to avoid high fanouts using a higher depth). If the deadline is T = 3 and

, Vol. 1, No. 1, Article . Publication date: June 2018.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

An approximation algorithm for threshold voltage optimization :5

1 for д ∈ G do
2 φ(д) ← z ▷ initially use slowest Vt
3 cд ← power(д, z − 1) − power(д, z) ▷ reduced costs

4 while ∃v ∈ Vout : slack(v,φ) < min{0, slack(v,1)} do
5 P ← most critical path ending in v w.r.t. φ

6 G(P) ← gates on timing path P

7 д∗ ← argminд∈GP
cд ▷ cheapest д w.r.t. cд

8 γ ← cд∗

9 for д ∈ G(P) do
10 cд ← cд − γ ▷ reduce cд for gates on P

11 φ(д∗) ← φ(д∗) − 1 ▷ accelerate д∗

12 if φ(д∗) > 1 then
13 cд∗ ← power(д∗,φ(д∗) − 1) − power(д∗,φ(д∗))
14 ▷ re-initialize cд∗

15 else
16 cд∗ ←∞

17 return φ

Algorithm 1: Vt optimization algorithm

..
.

T = 3

(d1,d2) = (1, 2)

Fig. 3. An example where a greedy algorithm might speed up all K gates on the right, while our primal-dual
algorithm chooses the left gate and at most one gate from the right side. (see Section 4.1)

the inverters have either delay 1 or 2 with an acceleration cost of 1, the optimum is given by only

accelerating the driving inverter.

Already for k = 2 a simple greedy approach, that sorts all acceleration possibilities of the gates by

the gain
∆delay
∆power and iteratively accelerates a gate that minimizes this (negative) ratio, e.g. a discrete

variant of the TILOS algorithm [4], does not achieve a constant approximation guarantee. It may

instead choose to accelerate all K inverters instead (in fact it will always do so if we reduce their

acceleration cost by some small constant ϵ > 0). Similarly, always choosing the cheapest gate on a

critical path (without our reduced cost update) will lead to the same behaviour.

Our primal-dual algorithmmight also start accelerating one of the inverters on the right. However,

this reduces the cost of the driving inverter on the common path to 0 (or ϵ). This one will, thus, be
the cheapest choice in the next iteration, and our algorithm will accelerate at most two inverters in

total.

, Vol. 1, No. 1, Article . Publication date: June 2018.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

:6 Siad Daboul, Stephan Held, Jens Vygen, and Sonja Wittke

4.2 Algorithm Analysis
Before we analyse the algorithm, we point out the theoretic connection to the set cover problem.

In the set cover problem we are given a set system S = {S1, . . . , Sr } where ∪ri=1
Si =: U and a cost

function cost : S → R≥0. We are then looking for a subset S′ ⊆ S such that ∪S ∈S′S = U and∑
S ∈S′ cost(S) is minimum.

If we assume that our instance has only two Vt levels, that is z = 2, we can formulate it as a set

cover problem in the following way. We call a set of gates G ⊆ G critical if in every timing feasible

solution at least one gate inG has the lowerVt level. Let P denote the set of all paths from an input

vertex to an output vertex. For a path P ∈ P we denote by G(P) the gates that have some edge

on P . Our universe will then beU = {G ⊆ G(P) : P ∈ P,G is critical}. For every gate д ∈ G we

define Sд = {G ⊆ G : д ∈ G,G ∈ U}.
It is easy to see that for a set X ⊆ G we have ∪д∈XSд = U if and only if accelerating the gates in

X yields a timing feasible solution. In the special case z = 2, Algorithm 1 is an adaptation of the

primal-dual algorithm of Bar-Yehuda and Even [2] for the set cover problem. The algorithm has

an approximation guarantee of maxu ∈U |{S ∈ S : u ∈ S} ≤ maxP ∈P |G(P)|. We will now give an

elementary proof of this bound for arbitrary z.
To prove quality guarantees of our new algorithm, we make two mild assumptions:

A1 Lowering the voltage threshold of a gate does not increase the delay of any edge in E.
A2 The delay dφ (P) of a path P can only be reduced by lowering φ(д) for a gate д ∈ G(P).
The first assumption is usually fulfilled if the input pin capacitances of a gate д do not depend on

its voltage threshold φ(д). The second assumption would follow from the first assumption in a

path-based timing analysis. In any case, deviations from these assumptions in practice are usually

small. We can prove the following worst-case guarantee.

Theorem 1. Assume that A1 and A2 hold. Algorithm 1 returns a feasible solution φ̄ to Problem (1).
The power increase over the cheapest possible solution, choosing z everywhere, is at most k times

greater than the power increase of an optimum solution φ∗:∑
д∈G

(
power(д, φ̄(д)) − power(д, z)

)
≤ k

∑
д∈G

(
power(д,φ∗(д)) − power(д, z)

)
,

where k is the maximum number of gates on any path in G.
The algorithm can be implemented to run in time O(z |G|θ), where θ is the running time for

identifying and traversing a critical path.

Proof. Obviously, the algorithm stops only when φ is a feasible solution. It stops after at most

(z − 1)|G| iterations of the while loop, proving the total running time bound.

Let U := {(P ,φ) : P is a path from v ∈ Vin tow ∈ Vout with slack(P ,φ) < min{0, slack(w,1)}}
be the set of pairs with path P and Vt assignment φ for which P is too slow. Suppose we add

y(P ,φ) := 0 for all (P ,φ) ∈ U in the initialization (before line 4), and y(P ,φ) := γ before line 11

of the algorithm (for the current values of P , φ, and γ). These numbers are needed only for the

following analysis.

For any gate д ∈ G and any i ∈ {2, . . . , z} we have, while φ(д) = i , the invariant

cд +
∑

(P,φ̂)∈U:д∈G(P),φ̂(д)=i
y(P , φ̂) = power(д, i − 1) − power(д, i). (2)

, Vol. 1, No. 1, Article . Publication date: June 2018.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

An approximation algorithm for threshold voltage optimization :7

Moreover, we have cд ≥ 0 at any stage, and cд = 0 when д = д∗ is accelerated in Line 11. Let φ̄
denote the output of the algorithm. At termination, we have for д ∈ G with φ̄(д) < i the property∑

(P,φ̂)∈U:д∈G(P),φ̂(д)=i
y(P , φ̂) = power(д, i − 1) − power(д, i). (3)

Let φ∗ be an optimal solution. By definition, and by assumptions A1 and A2, for every (P , φ̂) ∈ U
there exists a д ∈ G(P) with

φ∗(д) < φ̂(д). (4)

Using equations (2), (3) and (4) we conclude:∑
д∈G

(
power(д, φ̄(д)) − power(д, z)

)
=

∑
д∈G

z∑
i=φ̄(д)+1

(
power(д, i − 1) − power(д, i)

)
(3)
=

∑
д∈G

z∑
i=φ̄(д)+1

∑
(P,φ̂)∈U:д∈G(P),φ̂(д)=i

y(P , φ̂)

=
∑
д∈G

∑
(P,φ̂)∈U:д∈G(P),φ̂(д)>φ̄(д)

y(P , φ̂)

(5)
≤

∑
(P,φ̂)∈U

y(P , φ̂) |G(P)|

(6)

≤ k
∑

(P,φ̂)∈U
y(P , φ̂)

(4)
≤ k

∑
(P,φ̂)∈U

y(P , φ̂) |{д ∈ G(P) : φ∗(д) < φ̂(д)}|

= k
∑
д∈G

∑
(P,φ̂)∈U:д∈G(P),φ∗(д)<φ̂(д)

y(P , φ̂)

= k
∑
д∈G

z∑
i=φ∗(д)+1

∑
(P,φ̂)∈U:д∈G(P),φ̂(д)=i

y(P , φ̂)

(2)
≤ k

∑
д∈G

z∑
i=φ∗(д)+1

(
power(д, i − 1) − power(д, i)

)
= k

∑
д∈G

(
power(д,φ∗(д)) − power(д, z)

)
.

In (5) we use that the contribution to y of an element (P , φ̂) ∈ U can be counted at most once for

every gate д ∈ G(P), which are |G(P)| many. For (6) note that every path contains at most k gates.

□

The theorem obviously implies the following bound on the total power consumption.

, Vol. 1, No. 1, Article . Publication date: June 2018.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

:8 Siad Daboul, Stephan Held, Jens Vygen, and Sonja Wittke

Corollary 2. Assume that A1 and A2 hold. The solution φ̄ of Algorithm 1 exceeds the power of an
optimum solution φ∗ by at most a factor k :∑

д∈G
power(д, φ̄(д)) ≤ k

∑
д∈G

power(д,φ∗(д)),

where k is the maximum number of gates on any path in G.

Note that in our setting the number of gates on a longest path is a small constant compared to

the total number of gates. The running time θ is usually linear in |E |, but Algorithm 1 can as well

be used with a path-based timing analysis. See also Sections 5.6 and 6.1 for practical running time

reductions.

Algorithm 1 also provides a lower bound on the optimum power consumption. As we will see

this bound is much tighter than k in practice (cf. Section 6).

Corollary 3. Assume that A1 and A2 hold. Let φ∗ be an optimal solution. Let y(P ,φ) be defined
as in the proof of Theorem 1. At any point of Algorithm 1 we have∑

д∈G
power(д,φ∗(д)) ≥

∑
(P,φ)∈U

y(P ,φ) +
∑
д∈G

power(д, z).

Proof. This is part of the inequality chain (in particular the last two inequalities) in the proof of

Theorem 1. □

The lower bound can be computed easily by summing up the reduced costs of all accelerated

gates and adding the high VT power. As the y values are non-decreasing over the course of the

algorithm, they determine a lower bound at every intermediate step.

Note that our algorithm guarantees a close to optimum solution for low power designs with

small depth.

Consider an instance with small k , where the optimum solution φ∗ uses only slightly more power

than the solution φz , which assigns every gate to the slowest available realization. More precisely,

assume

∑
д∈G power(д,φ∗(д)) ≤ (1 + ϵ)

∑
д∈G power(д,φz (д)) for some ϵ > 0. By considering a

modified instance where φz has cost 0 one can easily see that our algorithm will return a solution φ̄
such that

∑
д∈G power(д, φ̄(д)) ≤ (1 + kϵ)

∑
д∈G power(д,φz (д)). The approximation ratio that we

obtain is therefore given by ρ ≤ 1+kϵ
1+ϵ . If we have k = 10 and there is an optimum solution that uses

1% more power than φz , i.e. ϵ = 0.01 we are guaranteed to obtain a
1.1
1.01
≈ 1.089 approximation.

We point out that the primal-dual cost update is essential to obtain a good approximation

guarantee. Other algorithms that greedily accelerate the critical path do usually not give any

guarantee. In the example in Section 4.1, our algorithm accelerates at most k = 2 inverters, as

Theorem 1 guarantees.

4.3 Sharpness of the analysis
It can be seen that our analysis in Theorem 1 is sharp. Indeed, suppose we have an inverter chain of

k + 1 gates with cycle time T = 1, where all gates have delay 0 for low Vt and power 0 for high Vt ,
the first gate has power 1 + ϵ for low Vt , and delay 1 for high Vt , and the other gates have power 1

for lowVt and delay
1

k for highVt . The algorithm will put all but the first gate on lowVt and spend
power k , while the optimum with power 1 + ϵ is exactly the opposite. However, the cell library

assumed in this example has unrealistically varying delay power tradeoffs for the different gates.

5 VARIANTS AND IMPLEMENTATION
In the following, we discuss several enhancements to improve the applicability on industrial designs.

, Vol. 1, No. 1, Article . Publication date: June 2018.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

An approximation algorithm for threshold voltage optimization :9

T = 1(de
1
,de

2
) = (1, 2)

Fig. 4. Situation in which some paths are not optimized due to a hopeless path. All gates have a fast delay of
de

1
= 1 and a slow delay of de

2
= 2.

5.1 Handling critical subpaths
Algorithm 1 finds a solution that maximizes the TNS while approximating the minimum power

consumption. Assume we are given an instance with two inverter chains of length 1 and one

inverter chain of length 3 that all share a common output vertex t ∈ Vout. If we have a cycle time of

T = 1 and all inverters have fast delay 1 and slow delay 2 the optimum solution will completely

accelerate the long path with three inverters as the optimum attainable TNS is -2. This instance is

depicted in Figure 4. Note that the critical inverters on the short paths are not accelerated, even

though doing so would remove the timing violation on the corresponding paths.

This shows that one should consider a more accurate timing metric than TNS. Reimann et al.

suggested to use the so-called TTNS (true TNS) to evaluate the timing on less critical subpaths [14].

The TTNS is maximized if every path with negative slack is as fast as possible.

Our algorithm can be extended to find a solution with TTNS(φ) = TTNS(1) by changing the con-
dition of the while loop in line 4 to look for an edge e ∈ E for which slack(e,φ) < min{0, slack(e,1)}
and selecting a most critical path through that edge in line 5. It is straightforward to prove that

this is also a k-approximation in terms of a cheapest solution in which every negative path is as

fast as possible. We can also stop once TTNS(φ) ≥ Θ for a given threshold Θ ≤ TTNS(1). In our

experiments, we chose Θ as the TTNS of the initial solution, for which we want to improve the

leakage power.

5.2 Power recovery
Once Algorithm 1 terminates some gates can usually be decelerated again without introducing

timing violations. For example, a fanout inverter on the right side in Figure 3 can be decelerated

after the driving inverter on the left has been accelerated. For the Bar-Yehuda and Even algorithm

the so-called reverse delete step [6] serves this purpose. In this post-processing routine the gates

are considered in the reverse order in which they were accelerated by the algorithm and decelerated

if this does not introduce any timing violation.

Alternatively, it is also tempting to decelerate gates in non-increasing order of their static leakage.

As this order experimentally led to better leakage reductions, we incorporated it to post-process

the result of Algorithm 1.

In contrast to the greedy approaches described in Section 4.1, Algorithm 1 together with the

recovery step solves the instance in Figure 3 optimally.

5.3 Breaking ties
By A1 we assume that lowering the voltage threshold does not increase the delay of any edge. We

verify this by measuring the slack gain after every acceleration and rejecting the change if the path

slack degraded. This hardly ever occurs but we also use the slack change to break ties if there are

, Vol. 1, No. 1, Article . Publication date: June 2018.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

:10 Siad Daboul, Stephan Held, Jens Vygen, and Sonja Wittke

multiple gates with the same reduced cost. To avoid excessive runtime increases we configure the

signoff timer to only update delays and slacks locally for these slack change evaluations.

5.4 Slew violation removal
Extensive Vt optimization may lead to violations of slew limits at some sink pins. We neglect these

violations during the course of Algorithm 1 and the power recovery step in the previous section.

However, at the very end we eliminate slew limit violations by lowering Vt levels or, only if the

footprint need not be preserved, by changing gate sizes. In our experiments, this affects a negligible

fraction of the gates.

5.5 Preprocessing
In practice, instances often contain hopeless paths, where all gates have to be assigned to the lowest

Vt level. We can significantly speed up our algorithm by identifying and accelerating these paths in

a preprocessing step.

For the TTNS optimization we set all gates to the fastest alternative and fix this lowest Vt level
for all gates whose slack is still negative. It is easy to see that such gates need to be set to the fastest

alternative in every feasible solution.

For the case of maximizing the TNS this approach can pre-assign more gates to low Vt than
necessary. For instance in Figure 4, the upper two gates do not influence the TNS. In this case we

can only fix gates whose deceleration would decrease the TNS. We can identify these gates by

propagating slack deltas in reverse topological order.

5.6 Disjoint paths for running time reduction
We can obtain a significant practical speedup by considering not only a single most critical path but

a set of gate-disjoint critical paths independently. In every iteration we compute a set of disjoint

violatedVin-Vout-paths and for each of these paths we accelerate exactly one gate with the minimum

reduced cost. This reduces the number of iterations and the number of global timing updates before

collecting the path(s), leading to a significant running time reduction.

We collect these paths by traversing the timing graph in reverse topological order, while blocking

gates that already occur in some path. Note that the bound in Theorem 1 still holds, because in

the proof we do not use that Algorithm 1 selects a most critical path. It is sufficient to pick any

violated path.

However as we will see later (Section 6), in practice the leakage might degrade a little when

using too many paths simultaneously. Thus, we select a certain fraction of the most critical paths.

To this end we use a sliding slack window that selects a subset of the timing endpoints. Initially,

we select all timing endpoints which are within r := 1 ps from the global worst slack.

To always select a good portion of failing paths, we adjust the window as follows. If we selected

less than
α · |G′ |
1000

paths in an iteration, where G′ ⊆ G is the set of gates with negative slack at

the start of the algorithm and α > 0 is a parameter, we increase r ← 1.15r . Otherwise, we set
r ← 1.15

−1r . Due to the multiplicative update of r the slack window will quickly be large enough

to select a sufficient amount of paths. Therefore the exact choice of r or the search factor of 1.15 do

not play a large role with respect to the measured runtime.

For our experiments we used α = 1 unless stated otherwise. In Section 6.1 we analyse the

dependency on α experimentally.

, Vol. 1, No. 1, Article . Publication date: June 2018.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

An approximation algorithm for threshold voltage optimization :11

5.7 Overall Vt assignment flow
Sometimes we do not want to obtain the best possible TTNS, instead the goal is to achieve the

quality of the initial solution φI using less power. In any case we always maximize the worst slack

and the TNS. This can be achieved by multiple calls to slight variants of Algorithm 1, which are

described in our overall optimization flow in Algorithm 2.

1 Run Algorithm 1 until the TNS is maximized.

2 Run the variant of Algorithm 1 described in Section 5.1, but without initialization (lines 1–3 of

Algorithm 1), and stop as soon as TTNS(φ) ≥ TTNS(φI). If after accelerating a gate the initial

leakage power

∑
д∈G power(д,φI (д) is exceeded we stop the algorithm.

3 Power recovery (Section 5.2).

4 Slew violations removal (Section 5.4), and (when sizing is allowed) placement legalization.

Algorithm 2: Optimization flow

6 EXPERIMENTAL RESULTS
We evaluated our implementation of Algorithms 1 and 2 on the industrial 22nm microprocessor

instances that were also used in [15]. For these instances, we can use one of the most successful

algorithms by Reimann et al. [15] for initial gate sizing and Vt assignment, and measure the

additional leakage power reduction achieved by our algorithm.

Our implementation is integrated into the IBM microprocessor design flow. For every instance

z = 3 Vt levels were available. We used the sign-off timing engine EinsTimer for all timing

calculations inside our algorithm and for the numbers in the tables. Wire delays were estimated

using the MAISE delay model [10], which is the default in the design environment. Here we apply

our algorithm on a highly optimized netlist. First, we use the gate sizing algorithm by Reimann et al.

[15] to reduce the static power consumption by up to 10% and the total power by up to 8.3%. Then,

we are then able to obtain additional static power reductions of up to 8% by using our algorithm.

The experiments were performed on a cluster of Linux servers with Intel Xeon CPUs with clock

frequencies between 2.6 and 3.4 GHz.

Unfortunately, only the instances from [15] at the beginning of the physical design flow were

available to us, but not the final gate sizing instances used in [15]. Thus, we reran the physical

design flow, which is the reason why our numbers slightly deviate from [15]. Note that Reiman et

al. [15] also reran the whole flow compared to their previous work [14].

We also report the lower bound P lb

static
on the minimum leakage for TNS maximization, which is

computed according to Corollary 3. Algorithm 2 stops once the initial leakage power or TTNS are

reached, way before the TTNS is maximized. At this point the bound induced by the y-variables is
not valid for the current TTNS, but only for the maximum TTNS. Thus, we always report the valid

bound for TNS maximization.

We ran three variants of our algorithm. We disabled the preprocessing step as we stop the

optimization as soon as the initial power is exceeded, which is not possible when a preprocessing is

used. The results are given in Table 2. The rows of Table 2 refer to the following experiments/flows:

• Initial: An unrouted industrial instance after placement, and full timing optimization including

a net-based layer, wiring width, and spacing assignment. Wires are estimated as short Steiner

trees on the respective layers assuming the assigned width and spacing. The snapshot is the

result of an industrial design flow.

, Vol. 1, No. 1, Article . Publication date: June 2018.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

:12 Siad Daboul, Stephan Held, Jens Vygen, and Sonja Wittke

• Lagrange [15]: We use the implementation of the gate sizing andVt assignment algorithm by

Reimann et al. [15], which is integrated into the industrial design environment. Note that [15]

is an industrial adaption of [5], the winner of the ISPD’13 contest. We observe similar power

improvements and running times as the original paper [15]. While they report a running

time of about 13 hours for the largest instance uP_10 with 126k gates we measured around

11.5 hours [15].

• Alg. 2 TNS-opt: We apply our optimization flow (Algorithm 2) on the result of the Lagrange

flow but omit the second step which optimizes the TTNS. The purpose of this step is primarily

to serve for comparison with the lower leakage bound P lb

static
.

• Alg. 2: We apply our optimization flow (Algorithm 2) on the result of the Lagrange flow.

• Alg. 2 post-GR: We apply our optimization flow (Algorithm 2) on the result of the Lagrange

flow followed by an industrial timing-driven global routing. Here, gate sizing is forbidden for

slew recovery to preserve gate footprints.

The columns show the instance names, the particular flow, the number of gates |G|, the maximum

number k of gates on a signal path, the worst slack WS, the total negative endpoint slack TNS, the

true total negative slack TTNS [14], the leakage power consumption P
apx

static
before power recovery,

the leakage power P recov

static
after power recovery and the leakage power P

fixup

static
after violation fixup,

its relative difference to the Lagrange flow in percent ∆P
fixup

static
, the lower bound P lb

static
for TNS

optimization according to Corollary 3, the ratio between the lower bound and the given solution,

the total power consumption Ptotal, its relative difference to the Lagrange flow in percent ∆Ptotal and
the running time of the Vt assignment or gate sizing algorithm respectively. Slew limit violations

were negligible at the end of each flow.

Algorithm 2 without global routing shows significant reductions of the leakage power compared

to the result of “Lagrange”. On uP_14 the reduction is 8.7%. Here we are provably less than 4%

away from the optimum solution. Algorithm 2 maximizes the TNS, which, thus, is never worse

than the TNS of “Lagrange” and in most cases it yields a better TNS. For the three instances uP_02,

uP_05, and uP_12, the power limit was reached in Step 2. The subsequent power recovery pushed

the leakage power below the limit.

The effect of the power recovery is usually small, but on some instances as uP_01 it can save up

to 2% of power in the post-GR mode. Similarly the increase of power by the violation fix up is not

significant as only few violations are introduced to begin with. For cap violations there were at

most 2 additional cap violations on a single instance and in total there is 1 cap violation less after

violation fixup.

We point out that in every run the TNS what maximized by our algorithm. To verify this we

analyzed the change of endpoint slacks on the 75787 endpoints of all instances uP_01-uP_14

between the end of Algorithm 2 and the reference algorithm [15] for which either of the algorithms

did not meet the slack target. Due to slight timing degradations by the power recovery, the worst

degradation at a single pin which we measured was -0.79ps. The best improvement of a pin was

14.3ps. The average improvement is 0.12ps, and the total improvement across all instances is 9.2ns.

By degrading the TTNS a major leakage reduction is possible as e.g. instance uP_13 shows where

the TNS-opt flow reduces the leakage by 28%. The worst approximation guarantee we obtain is

3.54 on instance uP_11, in any case the computed guarantee is significantly better than k which

ranges from 13 to 50.

When used after timing-aware global routing, the leakage reduction by Algorithm 2 is even more

significant. Algorithm 2, which does not require any re-routes, reduces the leakage power by up

to 34%. The reason is that the timing-aware global wires mostly result in faster signal delays and

the design flow uses slightly pessimistic delay estimates before global routing. Thus, the TNS and

, Vol. 1, No. 1, Article . Publication date: June 2018.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

An approximation algorithm for threshold voltage optimization :13

Instance with 110k gates Instance with 1500k gates

α 0.1 0.25 0.5 0.75 1.0 2.0 0.1 0.25 0.5 0.75 1.0 2.0

Iterations 15929 6226 3180 2174 1669 952 14974 5948 3119 2187 1637 1112

Runtime [h:m] 2:13 1:09 0:47 0:41 0:37 0:30 16:15 11:31 6:34 6:15 5:27 4:53

Leakage [µW] 40.73 40.72 40.68 40.68 40.63 40.77 361.40 361.47 361.75 361.74 362.17 362.49

Table 1. Running times and total leakages on two designs depending on α , i.e. the number of selected paths.

TTNS after global routing improve compared to the Steiner estimates with layer assignment. This

becomes also noticeable in the mostly reduced lower bounds on the leakage power. However, some

wire delays and sometimes even the WS degrade after global routing, e.g. on uP_01 and uP_11.

6.1 Running time evaluation
In addition to the results in Table 2 we also tried to analyse the scalability and running time

efficiency of our algorithm. To do this we measured the running time on two larger designs, a large

one with 1.5 million gates and a moderate instance with 110k gates. To investigate the scaling of

the algorithm we disabled any preprocessing. As indicated in Section 5.6 the number of paths that

is selected in every iteration has a big impact on the total running time. Therefore we tried various

different values for the parameter α introduced in Section 5.6.

For the larger instance approximately 1 million acceleration operations were performed in order

to reach a timing feasible solution. A naive implementation of our algorithm would thus perform 1

million iterations, each of which requires a full timing analysis of the instance.

In practice the situation looks much better, indeed we can accelerate about 1000 paths indepen-

dently on this instance as can be seen in Table 1. Note that even if the number of iterations is about

inversely proportional to α the running time doesn’t fully scale as we evaluate slack changes as

described in Section 5.3.

As bigger instances usually allow more paths to be collected, the number of iterations is almost

constant, implying an almost linear practical running time of our algorithm. If α is too large, we

obtain slightly worse results, thus our default choice of α = 1.

With preprocessing and α = 1 these two instances run in 0:20 and 2:31 hours, respectively.

7 CONCLUSIONS
We presented a primal-dual Vt optimization algorithm with a provable performance guarantee. In

practice, it achieved leakage reductions of up to 8% on netlists that where pre-optimized by one of

the most successful algorithms for gate sizing and Vt assignment [15].

Our approach also yields lower bounds which show that we solve some of the instances almost

optimally.

After global routing the reduction grows up to 34% without changing any footprints. This

indicates that the final Vt optimization should be done after routing, when most accurate delay

estimates can be used.

REFERENCES
[1] Abrishami, H., Lou, J., Qin, J., Froessl, J., and Pedram, M., Post sign-off leakage power optimization (2011), Proc. DAC,

453–458.

[2] Bar-Yehuda, R. and Even, S., A linear-time approximation algorithm for the weighted vertex cover problem (1981), Journal
of Algorithms 2(2), 198–203.

, Vol. 1, No. 1, Article . Publication date: June 2018.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

:14 Siad Daboul, Stephan Held, Jens Vygen, and Sonja Wittke

[3] Dinur, I. and Safra, S., On the hardness of approximating minimum vertex cover (2005), Annals of Mathematics 162(1),
439–485.

[4] Fishburn, J.P. and Dunlop, A.E., TILOS: A posynomial programming approach to transistor sizing (1985), Proc. ICCAD,
326–328.

[5] Flach, G., Reimann, T., Posser, G., Johann, M. de O., and Reis, R., Effective method for simultaneous gate sizing and V th
assignment using Lagrangian relaxation (2014), IEEE TCAD 33(4), 546–557.

[6] Goemans, M.X. and Williamson, D.P., The primal-dual method for approximation algorithms and its application to
network design problems (1997), Approximation Algorithms for NP-hard problems, Hochbaum, D. (ed.), PWS Publishing,

144–191.

[7] Grigoriev, A. and Woeginger, G.J., Project scheduling with irregular costs: complexity, approximability, and algorithms
(2004), Acta Informatica 41(2), 83–97.

[8] Hu, J., Kahng, A.B. , Kang, S., Kim, M.-C., and Markov, I.L., Sensitivity-guided metaheuristics for accurate discrete gate
sizing (2012), Proc. ICCAD, 233–239.

[9] Kahng, A.B. , Kang, S., Lee, H., Markov, I.L., and Thapar, P., High-performance gate Sizing with a signoff timer (2013),
Proc. ICCAD, 450–457.

[10] Liu, F. and Feldmann, P., MAISE: An Interconnect Simulation Engine for Timing and Noise Analysis (2008), Proc. ISQED,
621–626.

[11] Liu, Y. and Hu, J. A new algorithm for simultaneous gate sizing and threshold voltage assignment (2010), IEEE TCAD
29(2), 223–234.

[12] Ozdal, M., Burns, S., and Hu, J., Algorithms for Gate Sizing and Device Parameter Selection for High-Performance Designs
(2012), IEEE TCAD 31(10), 1558–1571.

[13] Rahman, M. and Sechen, C., Post-Synthesis Leakage Power Minimization (2012), Proc. DATE, 99–104.
[14] Reimann, T., Sze, C.C.N., and Reis, R., Challenges of cell selection algorithms in industrial high performance microprocessor

designs (2015), Integration, the VLSI Journal, (52), 347–354.
[15] Reimann, T., Sze, C.C.N., and Reis, R., Cell selection for high-performance designs in an industrial design flow (2016), Proc.

ISPD, 65–72.
[16] Shah, S., Srivastava, A., Sharma, D., Sylvester, D., Blaauw, D., and Zolotov, V., Discrete vt assignment and gate sizing using

a self-snapping continuous formulation (2005), Proc. ICCAD, 705–712.
[17] Skutella, M., Approximation algorithms for the discrete time-cost tradeoff problem (1998), Mathematics of Operations

Research 23(4), 909–929.
[18] Svensson, O., Hardness of Vertex Deletion and Project Scheduling (2012), Approximation, Randomization, and Combinatorial

Optimization. Algorithms and Techniques, Springer, 301–312.

, Vol. 1, No. 1, Article . Publication date: June 2018.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

An approximation algorithm for threshold voltage optimization :15

Instance Flow |G | k WS TNS TTNS P apx

static
P recov

static
Pfixup

static
∆P 2

static
P lb

static

P
static

P lb

static

P
total

∆P
total

Time
[ps] [ns] [ns] [µW] [µW] [µW] [µW] [µW] [h:m:s]

uP_01 Initial 99k 28 -69.5 -101.4 -602.6 81.7 +13.2% 95.1 +11.2%

Lagrange [15] -69.5 -96.4 -590.5 72.2 21.2 3.40 85.5 6:27:19

Alg. 2 TNS-opt -69.5 -94.8 -894.5 56.3 56.3 56.4 -21.8% 21.2 2.66 69.8 -18.4% 49:05

Alg. 2 -69.5 -95.1 -590.5 71.2 70.3 70.5 -2.4% 21.2 3.32 83.8 -2.0% 1:00:46

Alg. 2 post-GR -69.9 -78.2 -448.6 66.0 64.7 64.9 -10.1% 20.7 3.06 78.2 -8.6% 51:14

uP_02 Initial 10k 50 -156.9 -1.9 -10.0 1.2 +6.8% 2.4 +4.4%

Lagrange [15] -157.0 -1.9 -10.8 1.1 0.9 1.25 2.3 45:16

Alg. 2 TNS-opt -157.0 -1.8 -18.4 1.1 1.1 1.1 -6.1% 0.9 1.18 2.3 -3.0% 0:49

Alg. 2 -157.0 -1.8 -11.6 1.1 1.1 1.1 -1.0% 0.9 1.24 2.3 -0.5% 1:15

Alg. 2 post-GR -154.6 -1.9 -9.8 1.1 1.1 1.1 -0.9% 0.9 1.24 2.3 -1.0% 0:45

uP_03 Initial 9k 22 7.0 -0.0 -0.0 2.7 +2.0% 52.7 +0.7%

Lagrange [15] 7.0 -0.0 -0.0 2.7 1.7 1.54 52.4 57:52

Alg. 2 TNS-opt 7.0 -0.0 -0.0 2.5 2.5 2.5 -5.5% 1.7 1.46 52.3 -0.2% 4:32

Alg. 2 7.0 -0.0 -0.0 2.5 2.5 2.5 -5.1% 1.7 1.46 52.3 -0.2% 4:23

Alg. 2 post-GR 7.0 -0.0 -0.0 2.3 2.2 2.3 -15.4% 1.7 1.30 51.4 -1.9% 4:02

uP_04 Initial 7k 25 -11.2 -0.7 -0.7 1.6 +0.3% 2.9 +0.3%

Lagrange [15] -11.2 -0.7 -0.7 1.6 1.6 1.01 2.9 31:18

Alg. 2 TNS-opt -11.2 -0.7 -0.7 1.6 1.6 1.6 -0.1% 1.6 1.01 2.9 -0.0% 0:08

Alg. 2 -11.2 -0.7 -0.7 1.6 1.6 1.6 -0.1% 1.6 1.01 2.9 -0.0% 0:08

Alg. 2 post-GR -5.5 -0.4 -0.4 1.6 1.6 1.6 -0.2% 1.6 1.01 2.9 -0.6% 0:06

uP_05 Initial 16k 22 -76.6 -36.6 -64.0 20.3 +2.8% 67.3 +1.0%

Lagrange [15] -76.6 -36.8 -64.2 19.7 9.3 2.12 66.6 31:20

Alg. 2 TNS-opt -76.6 -36.7 -72.3 18.9 18.9 18.9 -4.0% 9.3 2.03 65.8 -1.2% 10:03

Alg. 2 -76.6 -36.7 -64.5 19.7 19.7 19.7 -0.2% 9.3 2.11 66.6 -0.1% 10:18

Alg. 2 post-GR -69.5 -27.3 -46.9 18.0 18.0 18.0 -8.8% 9.0 1.93 63.4 -4.8% 7:09

uP_06 Initial 77k 29 -108.9 -15.9 -25.6 35.7 +5.4% 147.6 +1.3%

Lagrange [15] -108.9 -14.5 -24.0 33.9 23.5 1.44 145.8 3:20:22

Alg. 2 TNS-opt -108.9 -13.3 -26.5 31.9 31.9 32.2 -5.0% 23.5 1.37 144.1 -1.2% 25:04

Alg. 2 -108.9 -13.3 -23.9 32.2 32.1 32.5 -4.2% 23.5 1.38 144.3 -1.0% 24:52

Alg. 2 post-GR -107.7 -9.8 -15.2 28.2 28.1 28.3 -16.4% 22.3 1.21 140.2 -3.9% 17:10

uP_07 Initial 72k 25 -33.9 -38.6 -231.6 60.8 +9.1% 73.2 +7.5%

Lagrange [15] -33.9 -39.2 -229.2 55.7 19.0 2.93 68.1 4:34:21

Alg. 2 TNS-opt -33.9 -36.6 -343.3 47.8 47.7 47.9 -14.1% 19.0 2.52 60.2 -11.5% 46:30

Alg. 2 -33.9 -36.7 -228.6 54.5 53.9 54.1 -3.0% 19.0 2.85 66.4 -2.4% 51:00

Alg. 2 post-GR -32.4 -28.6 -153.0 49.7 49.1 49.2 -11.6% 18.4 2.59 61.6 -9.5% 44:02

uP_08 Initial 18k 28 -72.6 -35.1 -176.4 16.8 +8.1% 85.9 +2.7%

Lagrange [15] -72.6 -34.5 -176.8 15.5 6.1 2.53 83.7 1:13:35

Alg. 2 TNS-opt -72.6 -34.5 -248.8 11.8 11.8 11.8 -23.8% 6.1 1.93 79.9 -4.5% 11:04

Alg. 2 -72.6 -34.5 -176.4 14.7 14.6 14.7 -5.6% 6.1 2.39 82.7 -1.1% 13:50

Alg. 2 post-GR -66.6 -26.7 -124.0 13.8 13.7 13.7 -11.7% 6.1 2.24 80.7 -3.5% 12:01

uP_09 Initial 18k 22 -23.2 -8.8 -36.2 14.5 +10.3% 47.8 +3.2%

Lagrange [15] -22.7 -8.6 -37.1 13.1 5.8 2.26 46.3 1:15:09

Alg. 2 TNS-opt -22.7 -8.2 -54.1 11.4 11.4 11.4 -13.0% 5.8 1.97 44.6 -3.7% 10:02

Alg. 2 -22.7 -8.2 -36.8 12.7 12.6 12.7 -3.6% 5.8 2.18 45.9 -1.0% 10:54

Alg. 2 post-GR -22.4 -6.6 -24.2 11.6 11.5 11.6 -11.8% 5.6 1.99 44.5 -3.9% 9:33

uP_10 Initial 126k 23 -43.8 -76.0 -342.6 91.6 +17.0% 395.2 +5.3%

Lagrange [15] -39.9 -80.5 -395.3 78.3 25.8 3.04 375.2 9:14:53

Alg. 2 TNS-opt -40.0 -73.9 -531.1 67.0 67.0 67.2 -14.2% 25.8 2.61 364.0 -3.0% 1:45:27

Alg. 2 -39.9 -74.0 -392.8 73.5 73.2 73.4 -6.3% 25.8 2.85 370.3 -1.3% 1:55:15

Alg. 2 post-GR -31.4 -30.8 -119.0 52.1 51.5 51.7 -34.0% 25.9 2.01 343.1 -8.6% 1:47:15

uP_11 Initial 25k 38 -140.7 -167.2 -886.7 39.7 +6.4% 61.6 +4.0%

Lagrange [15] -140.3 -165.2 -878.4 37.3 10.1 3.67 59.2 1:36:54

Alg. 2 TNS-opt -140.3 -165.4 -990.7 27.0 27.0 27.0 -27.5% 10.1 2.66 48.9 -17.4% 12:07

Alg. 2 -140.3 -165.1 -877.8 35.9 35.9 36.0 -3.6% 10.1 3.54 57.8 -2.2% 15:42

Alg. 2 post-GR -142.6 -157.8 -826.6 35.5 35.5 35.6 -4.6% 9.9 3.50 57.4 -2.9% 13:18

uP_12 Initial 18k 38 -417.8 -342.0 -696.1 5.1 +5.7% 25.5 +1.9%

Lagrange [15] -417.8 -342.5 -699.4 4.8 3.7 1.30 25.0 1:10:42

Alg. 2 TNS-opt -417.8 -340.5 -753.7 4.5 4.5 4.6 -4.9% 3.7 1.23 24.8 -1.0% 3:43

Alg. 2 -417.8 -340.5 -712.3 4.8 4.8 4.8 -0.2% 3.7 1.29 25.0 -0.0% 4:19

Alg. 2 post-GR -416.2 -332.9 -682.8 4.8 4.8 4.8 -0.3% 3.7 1.29 24.9 -0.3% 2:35

uP_13 Initial 20k 17 -47.6 -20.8 -103.4 19.6 +6.8% 80.2 +1.9%

Lagrange [15] -47.6 -20.6 -103.6 18.4 6.5 2.85 78.7 1:08:54

Alg. 2 TNS-opt -47.6 -20.4 -152.7 13.2 13.2 13.2 -28.1% 6.5 2.05 73.5 -6.6% 8:09

Alg. 2 -47.6 -20.5 -103.3 18.3 18.1 18.1 -1.5% 6.5 2.81 78.4 -0.4% 10:28

Alg. 2 post-GR -42.9 -17.9 -88.8 17.2 17.1 17.1 -6.9% 6.3 2.65 77.2 -1.9% 8:42

uP_14 Initial 13k 13 -54.8 -5.1 -9.2 8.2 +0.1% 17.9 +0.0%

Lagrange [15] -54.8 -5.1 -9.2 8.2 7.3 1.13 17.9 23:16

Alg. 2 TNS-opt -54.8 -5.1 -9.2 7.5 7.5 7.5 -8.7% 7.3 1.03 17.2 -4.0% 0:32

Alg. 2 -54.8 -5.1 -9.2 7.5 7.5 7.5 -8.7% 7.3 1.03 17.2 -4.0% 0:32

Alg. 2 post-GR -54.7 -5.0 -9.0 7.4 7.4 7.5 -8.9% 7.2 1.03 17.2 -4.1% 0:33

Table 2. Results on 22nm microprocessor instances. Alg. 2 runs as a postprocessing of the Lagrange [15]
algorithm.

, Vol. 1, No. 1, Article . Publication date: June 2018.

	Abstract
	1 Introduction
	2 Our contribution
	3 Preliminaries
	4 Vt optimization algorithm
	4.1 Example
	4.2 Algorithm Analysis
	4.3 Sharpness of the analysis

	5 Variants and Implementation
	5.1 Handling critical subpaths
	5.2 Power recovery
	5.3 Breaking ties
	5.4 Slew violation removal
	5.5 Preprocessing
	5.6 Disjoint paths for running time reduction
	5.7 Overall Vt assignment flow

	6 Experimental results
	6.1 Running time evaluation

	7 Conclusions
	References

