
1

Global Routing with Timing Constraints
Stephan Held, Dirk Müller, Daniel Rotter, Rudolf Scheifele, Vera Traub, Jens Vygen

Abstract—We show how to incorporate global static timing
constraints into global routing. Our approach is based on the
min-max resource sharing model that proved successful for
global routing in theory and practice. Static timing constraints
are modeled by a linear number of additional resources and
customers. The algorithm dynamically adjusts delay budgets and
can, thus, trade off wiring congestion for delay.

As a subroutine, the algorithm routes a single net. If this
subroutine is near-optimal, we will find near-optimal solutions
for the overall problem very efficiently. The approach works for
many delay models; here we discuss a linear delay model (before
buffering) and the Elmore delay model (after buffering).

We demonstrate the benefit of our timing-constrained global
routing algorithm by experimental results on industrial chips.

Index Terms—global routing, timing constraints, RC delay,
interconnect synthesis

I. INTRODUCTION

Global routing is an essential part of any chip design flow,
not only as a preparation for detailed routing, but also for the
early detection of routing congestion problems, and as input to
other algorithms, in particular those for buffering. The global
routing greatly impacts the timing behavior of a chip. If the
routing performs detours to avoid congestion, timing constraints
might get violated. In fact, critical nets are competing for using
congested routing resources.

This situation is shown in Figure 1. Assume that the paths
P1 = (N1, N2, N3) and P2 = (N4, N5, N3) are equally critical.
There are two congested areas shown in light red. Only one net
fits into each of them. A timing-unaware router might create a
detour for N1 and N2, letting P1 fail its timing requirement.
Pre-computed delay budgets would be unlikely to help, because
they typically distribute the budgets evenly to N1, N2 and
N4, N5 so that no net might be allowed to avoid the congested
area. The only feasible solution might be to allow a detour of
N1 and N5 or, alternatively, for N4 and N2, so that only one
net per path contains a detour.

The situation is complicated further by modern metal stacks,
where the wire widths and heights increase from layer to
layer [2], [44] so that the speed of a signal greatly depends
on the chosen layers and on the wire widths and spacings.
To achieve the fastest possible signal delay, nets compete for
using the limited routing resources on higher routing layers and
for choosing wider width and spacing than the layer-specific
routing pitch.

For this reason, many design flows contain a step called layer
assignment, which assigns a wire type and a range of wiring
planes to nets that are timing-critical [38], [19]. These end up as
constraints for routing [30], [25]. Recently, a congestion-aware

All authors are with the Research Institute for Discrete Mathematics,
University of Bonn, Lennéstr. 2, 53113 Bonn, Germany
(e-mail: {held,mueller,rotter,scheifele,traub,vygen}@or.uni-bonn.de)

N4

N1

N2

N5 N3

Fig. 1. Two timing-critical paths compete for space in a congested area (light
red rectangles).

layer assignment was proposed [44]. It uses global routing as
a black box for congestion estimation. However, it can only
assign entire nets, including connections to uncritical sinks,
where it would often be sufficient to assign parts of a net (near
the source, or like a backbone). For such precise decisions,
global timing constraints must be embedded into global routing
algorithms, with an as good timing model as possible.

A. Timing-driven global routing algorithms

Modeling global routing as a multicommodity flow problem
has a long tradition, starting with Shragowitz and Keel [41]. In
a more general form, it was modeled as a min-max resource
sharing problem by Müller, Radke, and Vygen [29]. As shown
in [28], [29], [43], it is easy to integrate power consumption,
coupling, or manufacturing yield.

There have been several approaches to consider timing
within a multicommodity flow or resource sharing formulation.
Net-based delay bounds were proposed by Huang et al. [17],
rejecting Steiner trees that violate the delay bound. They were
generalized to path-based delay bounds by Hong et al. [15],
now discarding Steiner trees for a net that result in a delay
violation of a path through that net. A fully polynomial time
approximation scheme (FPTAS) for minimizing the total wire
and buffer area with respect to buffer and wire space as well as
net-based delay constraints for two-terminal nets was developed
by Albrecht et al. [1]. Net-based and path-based delay bounds
were considered by Vygen [43] differently from [17] and [15].
Here, delay bounds on paths are treated in the same way as
routing space constraints. That is, delay violations are not
banned but minimized simultaneously with routing congestion.

Other notable approaches outside the resource sharing
framework were proposed by Hu and Sapatnekar [18], Yan
and Lin [45], and Yan, Lee, and Chen [46]. They all start with
timing-driven but congestion-unaware Steiner trees for all nets
and differ in the way these trees are embedded. A recursive
bisection of the chip area is performed in [18]. In each iteration,
they embed the trees and try to minimize congestion, using the

Copyright c© 2017 IEEE. Personal use of this material is permitted. However, permission to use this material
for any other purposes must be obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

2

flexibility of soft (diagonal) edges and by shifting Steiner points.
This flexibility of embedding the tree topology was combined
with a probabilistic algorithm in [45] and a multi-level routing
algorithm in [46].

Recently, Samanta et al. [37] proposed to precompute a set
of alternative timing-driven Steiner trees for each net. Then,
they find near-optimal fractional solutions minimizing the total
quadratic over-congestion, choosing convex combinations of
the pre-processed alternatives.

However, all these approaches have serious drawbacks: The
approaches proposed in [1], [17], [18], [37], [45], [46] require
delay budgets for all nets as input. Computing budgets that
guarantee that all timing constraints will be met and allow
for a feasible routing solution is a challenging task. This can
hardly be done outside a global router.

In [15], timing constraints are guaranteed at any stage, but
this may prevent the router to remove routing congestion. This
is because delay violations are never accepted although they
could often be compensated by a better Steiner tree for another
net on the same path.

The path-based formulation in [43] requires enumerating
critical paths. Their number can be exponential in the size of
the netlist. If we use only a small fraction of paths, a previously
non-critical path can become critical and many iterations might
be required.

B. Our contribution

To overcome the above limitations, we propose a new model
based on the min-max resource sharing framework. It integrates
all static timing constraints as a linear number of additional
resources and customers into the resource sharing model for
global routing. Our model works for RC-delay, linear delay,
and other delay models in which a net determines the delay
through its driving gate and the net itself. An implicit delay
budgeting is done as part of the algorithm.

The algorithm requires a subroutine (called routing oracle)
that routes a single net. Ideally, it minimizes the total cost of
used resources, where for each resource we multiply its current
price with the amount that we use. If the routing oracle is
near-optimal, we prove strong convergence and near-optimality
guarantees.

Our overall algorithm first computes a solution to the
fractional relaxation of the global routing problem with a
near-linear number of calls to the routing oracle. Finally, the
fractional solution is rounded using the well-known randomized
rounding technique [33].

In our implementation, we are concentrating on two delay
models. First, we consider linear wire delays that are used in
design steps before global buffering [4], [44]. In this case, we
present a polynomial-time exact routing oracle for a bounded
number of terminals. Our implementation contains speed-up
tricks and runs fast also for nets with many terminals.

Second, we consider RC delays, which is appropriate if
global routing is run after buffering. Here, we present an
RC-aware path search for point-to-point connections and a
topology algorithm for multi-sink nets. The RC-aware path
search uses estimates for the Elmore delay through a wire

which turn out to be quite precise in practice. The topology
algorithm is a constant-factor approximation algorithm in a
simplified two-dimensional setting without considering routing
congestion – congestion costs and different layer characteristics
are incorporated heuristically in our implementation.

In experiments on industrial microprocessor units, we
demonstrate that our algorithm significantly improves signal
delays and routing congestion compared to an industrial design
flow.

In Section II, we recapitulate the min-max resource sharing
model for global routing from [29], and show how to integrate
timing constraints. Our algorithm requires two subroutines.
The so-called arrival time oracle is the subject of Section III.
Sections IV and V discuss the routing oracles and present our
approaches to compute delay-aware Steiner trees in the two
considered delay models. We conclude with a description of
our overall algorithm in Section VI and experimental results
in Section VII.

This paper is based on uniting the conference papers [14]
and [39] but also contains several theoretical and practical
improvements, simplifications, and new experimental results.

II. RESOURCE SHARING WITH TIMING CONSTRAINTS

A. Min-max resource sharing

In the min-max resource sharing problem, we are given finite
sets R of resources and C of customers, a convex set Bc (the
possible solutions for c), called block, for every c ∈ C, and a
convex function usgc,r : Bc → R≥0 for every c ∈ C and r ∈ R,
specifying the percentage that a specific solution consumes
of resource r. The task is to find a solution for all customers
approximately minimizing the maximum resource usage, i.e.,
to find b(c) ∈ Bc for all c ∈ C approximately attaining

λ∗ := inf
{

max
r∈R

∑
c∈C

usgc,r(b(c)) : b(c) ∈ Bc (c ∈ C)
}
. (1)

In traditional global routing, C is the set N of nets, the
block of a net contains all Steiner trees connecting the pins
of this net, the resources are the edges of the global routing
graph, and usgc,r tells which fraction of the available space
a certain Steiner tree would consume at each edge. Then,
maxr∈R

∑
c∈C usgc,r(b(c)) is the worst relative congestion of

any edge, and λ∗ is the minimum attainable worst relative
congestion.

In the abstract model, the blocks are given implicitly by
oracle functions that optimize linear functions over the blocks.
In the traditional global routing example, these oracle functions
are implemented by an algorithm for computing an approxi-
mately minimum-cost Steiner tree for a given terminal set in
the global routing graph. In general, an oracle fc : RR≥0 → Bc
computes for given prices pricer ≥ 0 (r ∈ R) an element of
b(c) ∈ Bc approximately minimizing

∑
r∈R pricerusgc,r(b(c)).

Müller, Radke and Vygen [29] described a simple algorithm
that yields:

Theorem 1 ([29]): One can solve the min-max resource
sharing problem with approximation ratio σ(1 + ω) for any
ω > 0 in O(θ(|C| + |R|) log |R|(log log |R| + ω−2)) time.
Here, σ ≥ 1 is a constant bounding the approximation ratio of

3

the oracle and θ is the time for an oracle call. If 1
2 ≤ λ

∗ ≤ 2,
the running time reduces to O(θ(|C|+ |R|)ω−2 log |R|).

The algorithm proceeds essentially as follows. After an
initialization of the prices (to one), every iteration does the
following for each customer (in arbitrary order):
(a) call the oracle with the current prices, and
(b) update the prices of the resources used: they depend

exponentially on the total use of a resource during the
course of the algorithm. More precisely, whenever an
amount of αr is consumed of resource r, we set

pricer ← [pricer · eγ·αr , (2)

where γ > 0 is a parameter (that can depend on ω).
The prices can be interpreted as Lagrange multipliers. After a
certain number of iterations, the output for each customer is
simply the (fractional) arithmetic mean of the computed solu-
tions. Müller, Radke and Vygen [29] described the algorithm
in detail and proposed important speed-up techniques.

The arithmetic mean of the computed solutions is an element
of the block due to the convexity assumption, but it is not a
useful global routing output. In the traditional global routing
case, we get a convex combination of Steiner trees for each net,
but we would like to output only one Steiner tree. Therefore
we apply randomized rounding at the end (cf. [33], [29]).

B. Timing model

The nets are still customers (but no longer the only ones). For
a net N we call the elements of BN the routing solutions for
N , and we say that b = (b(N))N∈N is a routing if b(N) ∈ BN
for all N ∈ N .

Static timing constraints are modeled using an acyclic
digraph D. The vertex set of D is defined as V (D) := Vin

.
∪

Vout
.
∪ Vgate, where Vin denotes the set of primary inputs and

latch outputs, Vout the set of primary outputs and latch inputs,
and Vgate the set of input pins of gates. The edges of D
correspond to signal propagation, i.e. D contains an edge
(u, v) if either u ∈ Vin and v is a sink pin of the net driven
by u or if u ∈ Vgate and v is a sink pin of a net driven by
an output pin of the circuit that has u as input pin. For every
v ∈ Vin an arrival time at(v) and for every v ∈ Vout a required
arrival time rat(v) is given as input. Timing constraints are
then modeled by the usual inequalities

a(v) = at(v) for all v ∈ Vin, (3)
a(v) = rat(v) for all v ∈ Vout, (4)

a(u) + db(u, v) ≤ a(v) for all (u, v) ∈ E(D), (5)

where db(u, v) is the signal propagation delay along the edge
(u, v) ∈ E(D) that is determined by b. We assume that the
signal propagation delay db(u, v) from u to v only depends on
the routing solution b(N(v)) of the net containing v. Examples
are linear delays and RC-delays.

The numbers a(v) will be fixed to at(v) for v ∈ Vin and
variables for v ∈ Vgate ∪ Vout. It would also be possible to fix
the numbers a(v) to rat(v) for v ∈ Vout, but we will present
a flexible timing relaxation approach that allows violating
required arrival times at high costs. A routing solution b =
(b(N))N∈N meets all timing constraints if and only if there
are numbers a(v) for all v ∈ V (D) such that (3)–(5) hold.

All our results remain valid if a net influences the delay
of several edges. Formally, each function b 7→ db(u, v) must
be positive, separable (i.e., db(u, v) =

∑
N∈N f(b(N)) for

some nonnegative functions f , which holds trivially if the
delay depends only on N(v)), and convex. But the convexity is
trivially given with the following specification of a block. For a
net N ∈ N , let YN denote the set of its Steiner trees (possibly
with assigned space or wire types). We define the block for N
as the convex set BN := {β ∈ [0, 1]YN :

∑
Y ∈YN βY = 1}.

Now, for an edge (u, v) ∈ E(D) and a (fractional) solution
b(N(v)) = β ∈ BN(v), we assign the delay as

db(u, v) :=
∑

Y ∈YN(v)

βY dY (u, v),

where dY (u, v) is the delay imposed by the Steiner tree Y . This
way, b 7→ db(u, v) is a linear (and thus convex) function. Also
the consumption usgN,r(b(N)) of a resource r is simply the
convex combination of the consumptions by the Steiner trees.
Note that the running time of the resource sharing algorithm
does not depend on the dimension of BN : we compute one
Steiner tree per oracle call, and never store explicitly all the
entries of b(N), most of which will be zero.

There are other possibilities to define Vgate. One could simply
choose all vertices of the timing graph. Our approach reduces
the number of vertices (which will become customers in the
resource sharing formulation) and reflects the typical stage
of delay calculation through a gate and a net. In presence of
macros with high fan-ins, we can use the timing graph directly
to avoid a quadratic number of edges.

C. Lower and upper bounds on arrival times
We begin by computing an interval of reasonable arrival

times for each vertex. To this end, let dlb(u, v) be a lower
bound on the delay from u to v.

Let a→lb (v) := at(v) for v ∈ Vin and

a→lb (v) := max
{
a→lb (u) + dlb(u, v) : (u, v) ∈ δ−(v)

}
for v ∈ Vgate ∪ Vout, where δ−(v) denotes the set of edges in
E(D) entering v.

In practice, even with these lower bound delays we will often
not meet the required arrival times. Therefore we compute an
upper bound on the worst slack and allow violating any required
arrival time by

relax := max
{

0, max{a→lb (v)− rat(v) : v ∈ Vout}
}
.

Now, let a←lb (v) := rat(v) + relax for v ∈ Vout and

a←lb (v) := min
{
a←lb (w)− dlb(v, w) : (v, w) ∈ δ+(v)

}
for v ∈ Vgate ∪ Vin, where δ+(v) denotes the set of edges in
E(D) leaving v. By our choice of relax we have:

Proposition 2: a→lb (v) ≤ a←lb (v) for all v ∈ V (D).
For uncritical paths, these intervals can be very large, which

would lead to a slow convergence. Therefore we tighten them
as follows. Let dub(u, v) be a supposed upper bound on the
delay from u to v; we will describe in Sections IV-D and V-D
how we compute them. We assume 0 < dlb(u, v) ≤ dub(u, v)
for all (u, v) ∈ E(D) for the rest of this paper.

Let a←ub (v) := rat(v) for v ∈ Vout and

a←ub (v) := min
{
a←ub (w)− dub(v, w) : (v, w) ∈ δ+(v)

}

4

v1 : [0, 0] v2 : [6, 6] v3 : [20, 20]

rat = 20
v4 : [8, 11]

v5 : [0, 0] v6 : [6, 6]

v7 : [12, 12]

rat = 10

2 6

1
6

1

6 6

3

Fig. 2. Example of a timing graph D with arrival time intervals
[amin(v), amax(v)] shown at each v ∈ V (D), assuming arrival time 0 at
primary inputs v1 and v5, required arrival times at v3 and v7 as shown, lower
bound delays dlb(u, v) as shown at each (u, v) ∈ E(D), and dub := 2dlb.
In this example, we have relax = 2 because of the path from v5 to v7. The
arrival time intervals of the black vertices are determined by (6). The green
vertices are uncritical, hence their arrival time intervals are determined by (7).

for v ∈ Vgate ∪ Vin.
Let a→ub (v) := at(v) for v ∈ Vin and

a→ub (v) := max
{
a→ub (u) + dub(u, v) : (u, v) ∈ δ−(v)

}
for v ∈ Vgate ∪ Vout.

Choosing a(v) smaller than a←ub (v) is pointless because
a←ub (v) leaves enough time for all paths from v to Vout. In other
words, a←ub (v) is a lower bound on the required arrival time
at v, while a←lb (v) is an upper bound on the relaxed required
arrival time at v.

Similarly, a→lb (v) and a→ub (v) are a lower and upper bound
on the arrival time at v. We have:

Proposition 3: a→lb (v) ≤ a→ub (v) and a←ub (v) ≤ a←lb (v) for all
vertices v ∈ V (D).

If a←ub (v) ≤ a→ub (v), we define our final arrival time interval
by

amin(v) := max{a→lb (v), a←ub (v)},
amax(v) := min{a←lb (v), a→ub (v)}. (6)

Note that the interval [amin(v), amax(v)] is nonempty due to
Propositions 2 and 3.

However, a←ub (v) can be larger than a→ub (v). We call v
uncritical if a←ub (v) ≥ a→ub (v). If v is uncritical, we fix the
arrival time by setting

amin(v) := amax(v) := 1
2 (a→ub (v) + a←ub (v)) . (7)

As long as at least one endpoint of an edge is uncritical,
inequality (5) will be satisfied:

Lemma 4: For every edge (v, w) ∈ E(D) for which v or w
is uncritical, we have amax(v) + dub(v, w) ≤ amin(w).
PROOF. Case 1: a←ub (v) ≥ a→ub (v) and a←ub (w) < a→ub (w).
Then amax(v) ≤ a←ub (v) ≤ a←ub (w) − dub(v, w) ≤ amin(w) −
dub(v, w).

Case 2: a←ub (v) < a→ub (v) and a←ub (w) ≥ a→ub (w). Then
amax(v) + dub(v, w) ≤ a→ub (v) + dub(v, w) ≤ a→ub (w) ≤
a←ub (w) ≤ amin(w).

Case 3: a←ub (v) ≥ a→ub (v) and a←ub (w) ≥ a→ub (w). Then
amax(v) + dub(v, w) = 1

2 (a→ub (v) + a←ub (v)) + dub(v, w) ≤
1
2 (a←ub (w) + a→ub (w)) = amin(w).

Fig. 2 shows an example of a timing graph with arrival
time bounds as defined in (6) and (7). The edges (v1, v2) and
(v6, v3) (both Case 2), (v2, v7) (Case 1), and (v2, v3) (Case 3)
have an uncritical endpoint.

D. Delay resources and arrival time customers
To model the timing constraints in the min-max resource

sharing formulation of global routing, we add every edge

v1 v2 v3 v4N1 N2 N3

usg(v2) usg(v2)

usg(N1)

usg(N2)

usg(N3)resource capacity

a(v1) amin(v2)

a(v2)

amax(v2) amin(v3)

a(v3)

amax(v3) a(v4)

Fig. 3. Arrival time customers v1, v2, v3, v4 sharing delay resources (red)
with the arcs N1, N2, and N3.

e ∈ E(D) as a new resource to R, and each v ∈ V (D) as a
new customer to C whose purpose is to determine an arrival
time a(v) ∈ Bv , where

Bv := [amin(v), amax(v)]

for all v ∈ V (D). An arrival time solution consists of numbers
a(v) ∈ Bv for all v ∈ V (D). Our new set of customers is
comprised of net and arrival time customers: C = N ∪̇V (D).
It is of course not necessary to add customers for those vertices
whose arrival time is already fixed, but it simplifies the notation.

The resource e = (u, v) ∈ E(D) can be consumed only
by the customers u, v, and N := N(v): For b(N) ∈ BN ,
a(u) ∈ Bu, and a(v) ∈ Bv we define the usages of e as

usgu,e(a(u)) :=
a(u)− amin(u)

amax(v)− amin(u)
,

usgN,e(b(N)) :=
db(u, v)

amax(v)− amin(u)
, (8)

usgv,e(a(v)) :=
amax(v)− a(v)

amax(v)− amin(u)
,

while usgN ′,e and usgv′,e are constantly zero for all N ′ ∈
N \ {N} and v′ ∈ V (D) \ {u, v}. We call the denominator
amax(v)− amin(u) the delay capacity of e and require that it
is positive, which is naturally fulfilled if dlb(u, v) > 0.

Figure 3 illustrates (for a path v1 → v2 → v3 → v4) how the
delay resources are shared. The arrival time intervals are shown
at the bottom in black. The edge (vi, vi+1) has delay capacity
amax(vi+1) − amin(vi), shown as red intervals (i = 1, 2, 3).
The arrival times a(v1) and a(v4) are fixed, and possible values
for the arrival times a(v2) and a(v3) are shown as green and
blue vertical bars inside their interval. They imply the resource
consumptions (numerators of the above usg-functions) indicated
as green and blue horizontal bars. Net delays are shown by
grey bars.

For each v ∈ Vout we also add a relaxation resource rrelax(v)
to R. Only the arrival time customer v consumes this resource,
and its usage is

usgv,rrelax(v)
(a(v)) := 1 + ω

a(v)− amin(v)

amax(v)− amin(v)

so that any time beyond amin(v) will lead to a usage of more
than 1, and the usage on this resource is 1 + ω if we relax
this by the full amount. Here ω > 0 is the parameter from
Theorem 1.

As all resource consumption functions are nonnegative and
convex, we have indeed constructed an instance of the min-max
resource sharing problem.

5

E. Timing properties of low-congestion solutions

Our model is justified by the following lemma.
Lemma 5: Let (b(N))N∈N be a routing and (a(v))v∈V (D)

an arrival time solution. Then (b, a) meets all timing con-
straints (3) – (5) if and only if a→lb (v) ≤ rat(v) and
usgv,rrelax(v)

(a(v)) = 1 for all v ∈ Vout and

usgu,e(a(u)) + usgN(v),e(b(N(v)) + usgv,e(a(v)) ≤ 1

for all e = (u, v) ∈ E(D).
PROOF. (3) is trivially fulfilled since arrival times are fixed
for all v ∈ Vin. a→lb (v) ≤ rat(v) for all v ∈ Vout is clearly
necessary for meeting all required arrival times. If a→lb (v) ≤
rat(v) for v ∈ Vout we have amin(v) = rat(v) and hence
usgv,rrelax(v)

(a(v)) = 1 is equivalent to a(v) = rat(v), i.e. (4).
Let e = (u, v) ∈ E(D). Consider the inequality

a(u)− amin(u) + db(u, v) + amax(v)− a(v)

amax(v)− amin(u)

= usgu,e(a(u)) + usgN(v),e(b(N(v))) + usgv,e(a(v))

≤ 1.

Multiplying by amax(v) − amin(u) (> 0) shows that this is
equivalent to a(u) + db(u, v)− a(v) ≤ 0, i.e. (5).

Therefore, we can find a feasible global routing solution that
meets all timing constraints by solving (1) if such a solution
exists.

Let db(P) :=
∑

(u,v)∈E(P) db(u, v) be the total delay along
a path P . Then we also have:

Lemma 6: If no resource is used by more than 1 + ω, then
the worst slack

s(b) := min
P path from

x∈Vin to z∈Vout

(
rat(z)− at(x)− db(P)

)
, (9)

is at least −(relax + ωH), where

H := max
P path from
Vin to Vout

dub(P) + max
P path from
Vin to Vout

(
dub(P)− dlb(P)

)
|E(P)|.

PROOF. Let ∆→(v) := maxQ path to v(dub(Q) − dlb(Q)),
∆←(v) := maxQ path from v(dub(Q) − dlb(Q)), and ∆(v) =
∆→(v) + ∆←(v) for v ∈ V (D). Note that ∆(v) ≤
max P path from

Vin to Vout

(
dub(P)− dlb(P)

)
for all v ∈ V (D).

Let Euncritical := {e = (v, w) ∈ E(D) : amax(v) +
dub(v, w) ≤ amin(w)}. Note that we will never violate any
resource e ∈ Euncritical, so these resources could actually be
removed without harm (as long as delays are really bounded
by dub). By Lemma 4, Euncritical includes all edges for which at
least one of the endpoints is uncritical (but may contain more
edges).

For every edge (v, w) ∈ E(D) \ Euncritical we have

a→ub (v)+dub(v, w) ≥ amax(v)+dub(v, w)>amin(w) ≥ a→lb (w)

and hence

amax(w)− amin(v)

≤ a→ub (w)− a→lb (v)

< a→ub (w)− a→lb (w) +
(
a→ub (v) + dub(v, w)− a→lb (v)

)
≤ ∆→(w) + ∆→(v) + dub(v, w).

Analogously, for every (v, w) ∈ E(D) \ Euncritical we get

amax(w)− amin(v) < ∆←(w) + ∆←(v) + dub(v, w).

Summing the two inequalities and dividing by two yields

amax(w)− amin(v) ≤ 1
2 (∆(v) + ∆(w)) + dub(v, w).

If we sum over all edges on a path P from x ∈ Vin to z ∈ Vout,
except the uncritical edges, the result follows because the total
delay exceeds rat(z) + relax− at(x) by at most

ω
∑

(v,w)∈E(P)\Euncritical

(amax(w)− amin(v)).

III. ARRIVAL TIME ORACLE

Let v ∈ V (D) be fixed in this section, and let u1, . . . , uk
be the predecessors and w1, . . . , wl the successors of v in D.
Choosing a locally optimal arrival time a(v) ∈ Bv is easy:

Lemma 7: Given pricee ≥ 0 for e ∈ E(D), we can compute
an arrival time a(v) ∈ [amin(v), amax(v)] that minimizes∑
e∈E(D) priceeusgv,e(a(v)) in time O(|δ+(v)|+ |δ−(v)|).

PROOF. Choosing a(v) = t consumes amax(v)−t
amax(v)−amin(uk′)

from

the resource (uk′ , v) (k′ = 1, . . . , k) and t−amin(v)
amax(wl′)−amin(v)

from the resource (v, wl′) (l′ = 1, . . . , l). Thus, choosing
a(v) = t has cost

f(t) =

l∑
l′=1

price(v,wl′)
t− amin(v)

amax(wl′)− amin(v)

+

k∑
k′=1

price(uk′ ,v)
amax(v)− t

amax(v)− amin(uk′)
.

Since t 7→ f(t) is a linear function, the optimal choice for
a(v) is amin(v) if f(amin(v)) < f(amax(v)) and amax(v)
if f(amin(v)) > f(amax(v)). If equality holds, any choice
a(v) ∈ Bv would be optimal.

After updating the resource costs according to the chosen
arrival time, the other end of the interval [amin(v), amax(v)]
can become optimal. The easiest way to stabilize the arrival
time oracle is to apply the following algorithm.

Algorithm 1 Iterated arrival time oracle
1: for i = 1, . . . , n do
2: Compute ai(v) ∈ {amin(v), amax(v)} to minimize

f(ai(v))

3: pricer ←[pricer · eγ·n
−1·usgv,r(ai(v)) for r ∈ R

4: return a(v)← [1n
∑n
i=1 ai(v).

Using Algorithm 1 we still maintain the overall convergence
guarantee as the proof given in [29] shows. In practice, we
observe better results: the arrival times converge rather than
bouncing between the interval bounds. We now show how to
avoid running Algorithm 1 explicitly.

Lemma 8: For n→∞, the output of Algorithm 1 converges
to min{max{amin(v), t∗}, amax(v)}, where t∗ is the unique
root of the function

g(t) =

l∑
l′=1

price(v,wl′)
amax(wl′)− amin(v)

· eγ·
t−amin(v)

amax(w
l′)−amin(v)

−
k∑

k′=1

price(uk′ ,v)
amax(v)− amin(uk′)

· eγ·
amax(v)−t

amax(v)−amin(u
k′) .

6

PROOF. W.l.o.g. we assume that amin(v) < amax(v). First
note that g is strictly monotonically increasing. Let priceir be
the price of resource r ∈ R and fi the function f at the start
of iteration i. For l′ = 1, . . . , l and k′ = 1, . . . , k we have

pricei(v,wl′) = price1(v,wl′) · e
γ
n ·
∑i−1

i′=1

a
i′ (v)−amin(v)

amax(w
l′)−amin(v) and

pricei(uk′ ,v) = price1(uk′ ,v) · e
γ
n ·
∑i−1

i′=1

amax(v)−a
i′ (v)

amax(v)−amin(u
k′) .

If t∗ ≤ amin(v), then 0 ≤ g(amin(v)) and for i ≤ n:

fi(amin(v)) =

k∑
k′=1

pricei(uk′ ,v)
amax(v)− amin(v)

amax(v)− amin(uk′)

<

k∑
k′=1

price1(uk′ ,v)
amax(v)− amin(v)

amax(v)− amin(uk′)
e
γ

amax(v)−amin(v)

amax(v)−amin(u
k′)

≤
l∑

l′=1

price1(v,wl′)
amax(v)− amin(v)

amax(wl′)− amin(v)
≤ fi(amax(v)).

Analogously, we will always choose ai(v) = amax(v) if t∗ ≥
amax(v).

If amin(v) < t∗ < amax(v) we show that for fixed n,
Algorithm 1 selects solution amin(v) at most qn times, where

qn =

⌈
amax(v)− t∗

amax(v)− amin(v)
· n
⌉
.

For any iteration i ≤ n in which we have already selected the
left interval border qn times, it holds that

fi(amin(v))

(amax(v)− amin(v))

=

k∑
k′=1

price1(uk′ ,v)
amax(v)− amin(uk′)

e
γ
n ·qn·

amax(v)−amin(v)

amax(v)−amin(u
k′)

≥
k∑

k′=1

price1(uk′ ,v)
amax(v)− amin(uk′)

e
γ

amax(v)−t∗
amax(v)−amin(u

k′)

=

l∑
l′=1

price1(v,wl′)
amax(wl′)− amin(v)

e
γ

t∗−amin(v)

amax(w
l′)−amin(v)

>

l∑
l′=1

price1(v,wl′)
amax(wl′)− amin(v)

·

e
γ
n

(
(i−1)−n· amax(v)−t∗

amax(v)−amin(v)

)
· amax(v)−amin(v)

amax(w
l′)−amin(v)

≥
l∑

l′=1

price1(v,wl′)
amax(wl′)− amin(v)

e
γ
n ((i−1)−qn)·

amax(v)−amin(v)

amax(w
l′)−amin(v)

=
fi(amax(v))

(amax(v)− amin(v))
.

Hence, we would never choose amin again. An analogous
calculation shows that we select the right interval border
amax(v) at most qn times with qn :=

⌈
t∗−amin(v)

amax(v)−amin(v)
· n
⌉

.
Since n ≤ qn + qn ≤ n+ 1,

lim
n→∞

1

n

n∑
i=1

ai(v) = lim
n→∞

1

n

(
qnamin(v) + qnamax(v)

)
= t∗.

We approximate t∗ with Newton’s method, which has a
global quadratic convergence rate in our case.

Theorem 9: We can approximate the limit of the output of

Algorithm 1 for n→∞ up to accuracy δ > 0 in running time
O
(
(k + l) · log log amax(v)−amin(v)

δ

)
.

PROOF. We use Lemma 8. If g(amin(v)) ≥ 0 or
g(amax(v)) ≤ 0, we return amin(v) or amax(v), respectively.
So assume that amin(v) < t∗ < amax(v).

Substituting x(t) := t−amin(v)
amax(v)−amin(v)

, we can write g = g◦x,
where g is of the form

g(x) =

m∑
j=1

pje
γqjx

for m = k + l and constants pi, qi ∈ R with pjqj > 0 and
|qj | ≤ 1 for j = 1, . . . ,m.

Starting with an arbitary x0 ∈ [0, 1], Newton’s method
iteratively sets xi+1 := xi − g(xi)

g′(xi)
. By Taylor’s theorem,

0 = g(x(t∗))

= g(xi) + g′(xi) · (x(t∗)− xi) + g′′(ξ)
(x(t∗)− xi)2

2
for some value ξ ∈ [min{x(t∗), xi},max{x(t∗), xi}], which
implies

|x(t∗)− xi+1| =
|g′′(ξ)|

2|g′(xi)|
· |x(t∗)− xi|2.

Now,

|g′′(ξ)|
|g′(xi)|

≤ γ
∑m
j=1 |pjq2j eγqjξ|∑m
j=1 |pjqjeγqjxi |

≤ γeγ|ξ−xi| ≤ γeγ|x(t
∗)−xi|

for all ξ, xi and hence,

|x(t∗)− xi| ≤
γeγ|x(t

∗)−xi−1|

2
· |x(t∗)− xi−1|2.

As starting point x0 we choose a point with |x0 − x(t∗)| ≤
1
2γ . This can be achieved by a constant number of iterations of
binary search for fixed γ. Then, by induction, for all i ≥ 0 we
have |x(t∗)− xi| ≤ |x(t∗)− x0| ≤ 1

2γ for all i ≥ 0 and thus,

|x(t∗)−xi| ≤
(
γeγ|x(t

∗)−x0|

2

)2i−1

· |x(t∗)−x0|2
i

<
1

γ
· 1

22i
,

which yields the assertion.

IV. LINEAR DELAY ROUTING ORACLE

While for the classical global routing problem it suffices
to have a subroutine that approximately solves the standard
minimum cost Steiner tree problem, we need to compute Steiner
trees that take both congestion and timing into account. More
precisely, we are given a net N with source s and set of sinks
N \ {s} ⊆ Vgate ∪ Vout, and resource prices pricer ≥ 0 for all
resources r ∈ R. For a sink v we abbreviate

pricev :=
∑

e=(u,v)∈δ−D(v)

pricee
amax(v)− amin(u)

.

Then the task of our oracle is to find a Steiner tree Y ∈ YN
for N in the (three-dimensional) global routing graph G and a
wire type t(f) for each f ∈ E(Y) such that∑
f∈E(Y)

pricef · usgN,f (Y, t) +
∑

v∈N\{s}

pricev · dY,t(v), (10)

is minimized. Here, usgN,f (Y, t) denotes the percentage of
the space at f that wire type t(f) consumes (if f ∈ E(Y)),
and dY,t(v) is the delay from u to v induced by the routing

7

solution (Y, t), for e = (u, v) ∈ E(D) with v ∈ N \{s}. Note
that in both delay models that we consider, this is independent
of the predecessor u.

This problem is NP-hard regardless of the delay model,
because it contains the rectilinear Steiner tree problem [11].
In this section, we focus on a linear delay model that is often
used in design phases before and in particular in preparation
for global buffering [4], [44]. In Section V we will consider
RC delay.

A. Linear delay model

In the linear delay model, dY,t(v) consists of a constant gate
delay and a linear delay through the Steiner tree as follows.
Each vertex v ∈ V (G) of the global routing graph is associated
with a position p(v) = (x(v), y(v), l(v)) ∈ R3. Each edge
e ∈ E(G) is either a via, i.e. connects two vertices with the
same x- and y-coordinates on adjacent layers, or a wire within
one layer, with a geometric length len(e) > 0. Let dw(l, t)
denote the wire delay per length of a wire of type t on layer l.
We denote the delay to traverse a via of type t between layers
l and l′ by dv(l, l′, t). Then, we define the delay that the signal
needs to traverse a path P within a Steiner tree as∑
e={u,v}∈E(P):

l(u)=l(v)

len(e) · dw(l(u), t(e)) +
∑

e={u,v}∈E(P):
l(u)6=l(v)

dv(l(u), l(v), t(e)).

Details on how to estimate the values dw and dv can be found
in Bartoschek et al. [4]. The delay imposed by the capacitance
of side branches could be modeled as well [4], [13].

Even for this simple linear delay model, Chuzhoy et al. [9]
showed that there is no routing oracle with approximation
ratio o(log log |N |) unless every problem in NP can be solved
in O(nlog log logn) time (where n is the instance size). Here,
|N | denotes the number of pins of net N . The best known
approximation algorithm is due to Meyerson, Munagala and
Plotkin [27] and has approximation ratio O(log |N |). However,
as we will see, the problem can be solved optimally in
polynomial time for constant |N |.

We propose a fast approach that first computes a topology
and, then, embeds it into the global routing graph.

B. Shallow light routing topologies

First we compute a routing topology using the bicriteria
approximation algorithm of Held and Rotter [13], generalizing
the work of Khuller et al. [24]. It trades off the partially
opposite objectives of bounding total length and path delays.

Theorem 10: ([13]) Given a net N with source s, a (short)
rectilinear Steiner tree Y0 for N , 2 ≥ ε > 0, a constant
dw > 0, and delay bounds rat(v) for v ∈ N \ {s} such that
rat(v) ≥ dw·dist(s, v), one can compute inO(|N | log |N |) time
a rectilinear Steiner tree Y for N such that for all v ∈ N \{s}:

dw

∑
e∈E(PY (s,v))

len(e) ≤ (1 + ε) · rat(v) and

∑
e∈E(Y)

len(e) <
(
2 +

⌈
log
(
2
ε

)⌉)
·
∑

e∈E(Y0)

len(e),

where dist(s, v) denotes the `1-distance between s and v and
PY (s, v) denotes the path from s to v in Y .

We choose rat(v) = δ+ min{a(v)−a(u) : (u, v) ∈ δ−D(v)}
for all v ∈ N \{s}, where δ ∈ R is chosen as small as possible
so that δ ≥ 0 and rat(v) ≥ dw · dist(s, v) for all v ∈ N \ {s}.
The initial tree Y0 is computed by a standard geometric Steiner
tree algorithm. We choose ε ∈ [0.1, 0.2], depending on how
timing-critical the net currently is.

For large instances, we start with a geometric clustering of
all sink pins using the algorithm by Maßberg and Vygen [26].
Bicriteria Steiner trees are computed separately for all clusters
and for the top-level tree. For each cluster we place a root at
the projection of the source into the cluster’s bounding box.
This clustering and two-stage topology generation allows us to
use the wire delay parameter dw corresponding to the lowest
major routing layer inside the clusters and to the highest layers
for the top-level tree.

C. Embedding a routing topology

We use the routing topology only to extract the connec-
tivity information. We now embed a topology into the three-
dimensional routing graph G, ignoring the location of its Steiner
vertices. This problem can be solved optimally.

Theorem 11: An optimum embedding of a given routing
topology for a net N into a graph G can be found in
O (|N | · (|T | · |E(G)|+ |V (G)| log |V (G)|)) time, where |N |
is the number of pins and |T | is the number of wire types.
PROOF. Let Y be a routing topology for a net N with
source s. Orient Y as an arborescence with root s. Using local
transformations, we may assume that the leaves are exactly the
sinks of the net, s has out-degree 1, and every Steiner vertex
has out-degree 2. For w ∈ V (Y) we denote the subtree of Y
with root w by Y (w).

We embed edges of Y into G in reverse topological
order. While processing an edge (v, w) ∈ E(Y) we compute
labels (u, α(v,w)(u))(v,w) for all u ∈ V (G) corresponding to
embeddings of v+ (v, w) + Y (w). The cost of the embedding
will be at most α(v,w)(u) and the position of v will be u. We
also specify timing prices for all Steiner points.

If w is a sink, we run Dijkstra’s algorithm from w
in the graph G′ := (V (G), {(x, y)t, (y, x)t : {x, y} ∈
E(G), t wire type}). The price for traversing an edge (x, y)t ∈
E(G′) is

costw((x, y)t) := price{x,y} ·width(t)+price(w) ·d((x, y)t),
(11)

where

d((x, y)t) =

{
dv(l(x), l(y), t) : {x, y} is type-t-via
len({x, y}) · dw(l(x), t) : {x, y} is type-t-wire.

The permanent labels after termination of Dijkstra’s algorithm
are exactly as desired.

If w is a Steiner point in Y , let δ+Y (w) = {z1, z2} and
assume that for u ∈ V (G) we have already computed
labels (u, α(w,zi)(u))(w,zi) (i = 1, 2) as desired. We set
price(w) := price(z1) + price(z2) and run Dijkstra’s algorithm
on the graph arising from G′ by adding a new node w′ and an
edge (w′, u) for all u ∈ V (G). A new edge (w′, u) gets cost
costw((w′, u)) := α(w,z1)(u) + α(w,z2)(u), while the cost of
edges in G′ are defined as in (11). Vertex w′ serves as start

8

node for the path search. Due to the choice of costs of the
edges outgoing of w′, any w′-u-path found by this algorithm
naturally corresponds to an embedding of v + (v, w) + Y (w),
and the algorithm produces labels as desired.

Finally, let (s, w) ∈ E(Y) be the unique edge leaving
s in Y . We output the embedding corresponding to label
(s, α(s,w)(s))(s,w).

The running time of the overall algorithm is dominated by
the |V (Y)| − 1 = O(|N |) applications of Dijkstra’s algorithm,
each taking time O(|T | · |E(G)|+ |V (G)| log |V (G)|).

To prove correctness, we show that for each (v, w) ∈ E(Y)
and u ∈ V (G), there is no embedding of v + (v, w) + Y (w)
in which v is positioned at u and that has cost smaller than
α(v,w)(u).

If w is a sink, this is clear by correctness of Dijkstra’s
algorithm. Otherwise, let A∗ be an optimum embedding of
v + (v, w) + Y (w) in which v has position u. Let p be the
position of w in A∗. If δ+(w) = {z1, z2}, A∗ consists of
embeddings Ai of w + (w, zi) + Y (zi) for i = 1, 2 plus an
p − u path. By induction and construction, the cost of the
edges between w′ and u in the modified graph created for
the application of Dijkstra’s algorithm during processing of
(v, w) ∈ E(Y) does not exceed the sum of costs of A1 and
A2. By correctness of Dijkstra’s algorithm, α(v,w)(u) does not
exceed the cost of A∗.

Corollary 12: If |N | is bounded by a constant, there is a
linear delay routing oracle that finds an optimum solution in
polynomial time.
PROOF. Enumerate and embed all (2|N |−4)!/(2|N |−2(|N |−
2)!) topologies for N .

One can also enumerate topologies during the embedding
as in [16], but even then, this approach is too slow in practice.

In order to speed up the practical running time of the
Algorithm of Theorem 11, we label only a subset of V (G). Let
(w, z1), and (w, z2) be the two outgoing edges of a Steiner node
w ∈ V (Y) and let (v, w) be the unique edge entering w in Y .
We perform the two path searches that create labels of the form
(u, α(w,z1)(u))(w,z1) and (u, α(w,z2)(u))(w,z2) simultaneously.
When we have reached the first common point q ∈ V (G)
with both path searches, we store the sum ξ of the costs for
both labels. In addition, we estimate the “future” cost ψ of
embedding the edge entering w. We stop as soon as labels
get larger than ξ + ψ. When we embed (v, w), we add edge
(w′, u) to G′ if and only if u has been reached by both path
searches before.

As an estimate for ψ one could use 0 or (better) start a path
search from q to a grid point whose x, y coordinates equals the
point of v in the pre-computed topology. In the second case,
the embedding algorithm is optimum for up to three terminals.

When we embed the edge leaving s, we can stop as soon
as we have reached s.

D. Lower and upper bounds

To define a lower bound dlb(v, w) on the delay between two
pins v and w we compute the delay on a straight v-w-path
on an optimum layer with optimum wire type. If v and w are

located on layers l(v), respectively l(w), and their geometric
distance in x/y direction is dist(v, w), this delay is equal to

min
l layer,
t wire type

max{l(v),l}−1∑
l′=min{l(v),l}

dv(l
′, l′ + 1, t)

+ dist(v, w) · dw(l, t)

+

max{l(w),l}−1∑
l′=min{l(w),l}

dv(l
′, l′ + 1, t)

 .

This optimum straight path delay plus the delay through the
gate if v /∈ Vin yields dlb(v, w).

For the definition of dub(v, w) we again start by computing
the delay along a straight path. Instead of selecting optimum
layer and wire type, we select the lowest available layer and
the wire type with smallest width and spacing. We multiply
this straight path delay with a detour factor that accounts for
both

1. detours caused by the choice of the embedded topology,
and

2. detours caused by the embedding of edges of that topology,
and add a small constant.

The ratio between the `1-length of the path from the source
s of N(w) to w in the initial short Steiner tree Y0 that is given
as input to the algorithm of Held and Rotter [13] (cf. Theorem
10), and the geometric `1-distance between s an t is an upper
bound on the detour due to the embedded topology. Bounding
the detour caused by the embedding is more difficult. In our
experiments, we chose an additional factor of 1.5. Statistics
show that 99.8% of all computed Steiner trees stayed within
that upper bound.

V. RC TREE ROUTING ORACLE

In this section we are going to present the RC tree routing
oracle, which is intended to be used on an already buffered
and well-optimized netlist. We will use the same problem
formulation as in Section IV, so we again minimize (10), but
now use the Elmore delay model instead [10], [36]. Moreover,
in contrast to Section IV, we will not assign wire types to
individual edges in our routing tree, but assume that every net
has a fixed wire type to be used for the whole tree given in the
input. Assigning wire types would be an enhancement of the
RC tree oracle; this should be subject of future research. Due
to the fixed wire type, we can w.l.o.g. assume usgN,f (Y, t) = 1
for all edges f (by scaling the prices appropriately).

A. The Elmore delay model

We assume that for every layer l of the three-dimensional
global routing graph we are given constants reswire(l) and
capwire(l) denoting the resistance and capacitance of a unit-
length wire on l, and resvia(l) and capvia(l) denoting the
resistance and capacitance of a via from layer l to l + 1.
These constants can be net-dependent due to differences in
wire types, but since we are only showing how to compute a
solution for one given net in this section without doing a wire
type assignment, we will not make this distinction. Given such
constants we can derive a resistance res(e) and a capacitance
cap(e) for every edge e of the global routing graph. For the

9

rest of this section we will assume capvia(l) = 0 for all layers
l – this is an estimate that is commonly used in practice and
it simplifies some of our results.

In order to define Elmore delay in our setting we will use the
convention that any Steiner tree is an arborescence rooted at
the source pin for the rest of this section. Given such a Steiner
tree Y for a net with source s and set of sinks N \{s}, a driver
resistance res(s) ≥ 0 and sink pin capacitances cap : N\{s} →
R≥0, we can now define the Elmore delay dY (v) between s
and v ∈ N \ {s} as

dY (v) := res(s) · CY (s) +
∑

e=(x,y)∈E(PY (s,v))

res(e)
(

cap(e)

2
+ CY (y)

)
,

where we again denote the subtree rooted at y ∈ V (Y)
by Y (y) in order to define the downstream capacitance
CY (y) :=

∑
e∈E(Y (y)) cap(e)+

∑
t∈T∩V (Y (y)) cap(t), and we

let PY (s, v) be the s-v path in Y .
Note that our definition of Elmore delay also includes the

term res(s) ·CY (s), which is an estimate for the gate delay if
s is the output pin of a gate, or for the delay induced by the
capacitance of Y if s is a primary input. The delay along an
edge e = (u, v) ∈ E(D) then is the Elmore delay between s
and v, where s is the source pin of the net containing v.

As in (10), our routing oracle now has to minimize the
weighted sum of Elmore delays and congestion costs. We call
this problem the Congestion-Aware Minimum Elmore Delay
Steiner Tree Problem.

The problem of constructing Steiner trees minimizing Elmore
delay for multi-sink nets has been dealt with extensively in the
literature. Boese et al. [7] proved the existence of an optimum
solution on the Hanan grid when the weighted sum of source-
sink delays is minimized. This allows them to solve the problem
in exponential time. However, they give an example in [6] that
the existence of an optimum solution on the Hanan grid is
generally not given when the maximum source-sink delay is
minimized. Kadodi [21] and Peyer [31] show how to minimize
the maximum source-sink delay for instances with at most
three sinks in constant time. Moreover, various heuristics have
been implemented and evaluated in practice [7], [6], [42], [5],
[32]; see also the book of Kahng and Robins [22] for an
overview. However, in a more recent work, the first constant-
factor approximation algorithm for constructing Steiner trees
minimizing Elmore delay has been developed [40].

Our routing oracle will consist of two parts: We first show
how to define edge costs for a path search algorithm such
that a shortest path with respect to these costs approximately
minimizes the sum of Elmore delay and congestion costs. This
allows us to find approximately optimum solutions for two-pin
connections, and afterwards we will deal with the construction
of Steiner trees for multi-sink nets.

B. The RC routing oracle for two-terminal nets

We start with the description of our path search costs. To
simplify notation, we will assume pricev = 1 for the sink v;
this can be achieved by appropriate scaling. We will need the
following definitions: For x, y ∈ V (G) we let dist(x, y) denote
the rectilinear distance between x and y, and reslb(x, y) be

a lower bound for the resistance of a wire connecting x and
y. Moreover, we denote by capmin and capmax the minimum
and maximum wire capacitance per unit length over all layers.
Given a two-pin net N with source s and sink v, we can define
costs rc-cost(e) for e = (x, y) ∈ E(G) as follows:

costcong(e) := pricee,
costsrc(e) := res(s) · cap(e),

costwire(e) := res(e)
(

cap(e)

2
+ capmin · dist(y, v) + cap(v)

)
,

costcorr(e) := reslb(s, x)
(
cap(e)− capmin · dist(x, y)

)
,

rc-cost(e) := costcong(e) + costsrc(e) + costwire(e)

+ costcorr(e).

To give an intuition for these costs: costcong(e) denotes the
congestion cost of e and costsrc(e) the driver delay induced by
the capacitance of e. costwire(e) is a lower bound estimate for
the wire delay along e. costcorr(e) is a correction term: Since
we always use the minimum wire capacitance per unit length
for calculating costwire, we make a correction here if we use
an edge on a layer with a higher unit length capacitance. We
note that the theoretical bounds that we are going to present
also hold if reslb is set to zero. In this respect, costcorr could be
omitted, but we still use it because it is beneficial in practice.

Since costwire and costcorr contain estimates for the down-
stream capacitance and the upstream resistance of a wire, one
can see that it is expensive to put high-resistance wires far
away from the sink pin and high-capacitance wires far away
from the source-pin. This motivates the router to use the upper
layers when close to the source pin and taper down to the
lower layers as it gets closer to the sink pin, since on modern
metal stacks the resistance drops significantly when going to
the upper layers while the capacitance stays roughly the same.
As congestion is considered natively during the path search,
this allows for a very efficient usage of routing resources.

In order to analyze the performance guarantee of our new
path search costs, we extend the definition of rc-cost and price
by setting rc-cost(Y) :=

∑
e∈E(Y) rc-cost(e) and price(Y) :=∑

e∈E(Y) pricee +
∑
v∈N\{s} pricev · dY (v) for a Steiner tree

Y for a net N with source s. Moreover, given a Steiner tree Y ,
we let distY (x, y) for x, y ∈ V (Y) denote the length of the
x-y-path in Y . We can now formulate the following theorem,
using 0

0 := 1 here and for the rest of this section:
Theorem 13 ([39]): Consider a two-pin instance of the Con-

gestion-Aware Minimum Elmore Delay Steiner Tree Problem
with source s and sink v, and let Y be a shortest s-v-path
with respect to rc-cost. Then we have price(Y) ≤ α · capmax

capmin
·

OPT , where α = maxy∈V (Y)
distY (y,v)
dist(y,v) and OPT denotes the

minimum achievable price.
For a proof the reader is referred to [39]. This bound turns

out to be quite strong in practice: The ratio capmax
capmin

is technology-
dependent, and on our current 14nm microprocessor test cases
it is very close to 1 for most wire types. More precisely, this
ratio is 1.06 for a minimum width wire (which will be used
to route the majority of nets) if the lowest eight wiring layers
are taken into consideration. α on the other hand depends on
the router, but as our experiments show, it is also quite close

10

Detour % % Paths
0 98.3

0-10 0.02
10-20 0.15
20-30 0.25
30-50 0.38
50-100 0.44
> 100 0.48

Fig. 4. Congestion map and detour histogram of unit US. The congestion
target was set to 95%, which corresponds to dark orange edges.

to 1 for most paths found by our router: We extracted the final
routing for every chip in our routing testbed and compared the
routed length of every path to the `1-distance of its endpoints.
Most detours were made on US (cf. Section VII), but even
there 98.3% of all paths were shortest paths with respect to `1
distance, and the average detour made was only 1.4%. This
data is shown in Figure 4.

C. Multi-terminal nets
For multi-sink nets we will use an extension of the algorithm

presented in [40] in our implementation, as the original work
does not incorporate congestion costs and different layer
characteristics, i.e. it assumes a uniform wire resistance and
capacitance per unit length and does not include via resistances.
In addition to the usual instance specification it also gets
a parameter ε > 0 as input that trades off the potentially
conflicting objectives of minimizing driver and wire delay:
While minimizing driver delay requires the tree to be as short
as possible, wire delay is minimized by a star-like topology.
We also assume that we are given a short Steiner tree Y0 as
input, which can be constructed by a minimum Steiner tree
algorithm. Letting capwire denote the uniform wire capacitance
per unit length, the algorithm constructs a tree Y as follows:

Algorithm 2 RC tree topology algorithm
1: Y ← [Y0 ← [initial short Steiner tree rooted at s.
2: for all edges (x, y) of Y0 in reverse topological order do
3: bound(y)← [ε2 min

{
dist(s, z) : z ∈ V (Y (y)) ∪ {x}

}
4: if CY (y)

capwire
+ dist(x, y) ≥ bound(y) then

5: delete (x, y) and reconnect Y (y) to s by a shortest
path.

6: return Y

The algorithm then outputs a tree such that the total tree
capacitance increases by at most a factor of (1 + 2

ε) compared
to the initial tree and the wire delay is at most a factor of
(1 + ε)2 larger than a lower bound for the wire delay in any
tree. By choosing the right value of ε the algorithm achieves
an approximation ratio of 3.39 assuming that the input tree is a
shortest Steiner tree (see e.g. [3], [34], [8] for the construction
of nearly shortest Steiner trees) and 4.31 assuming the 1.5
approximation ratio of a minimum spanning tree [20]. For
more details on the algorithm, the reader is referred to [40].

Our implementation incorporates congestion costs and layer
characteristics in the following way: Instead of computing an

initial tree that only minimizes wiring length, our initial tree
minimizes the weighted sum of congestion costs and driver
delay. More precisely, we first run a minimum Steiner tree
algorithm where the cost of an edge e ∈ E(G) is given by
costcong(e)+costsrc(e). We then run Algorithm 2 for every value
of ε ∈ [0.25, 25] that is a multiple of 0.25 without running
a path search, but rather estimate the cost of the resulting
solution by assuming that the newly found paths are shortest
paths on the lowest allowed wiring layers for the given net. If
we find a solution with lower estimated costs than the initial
short Steiner tree Y0, we run Dijkstra’s algorithm using the
aforementioned rc-cost in order to reconnect the components
computed by the algorithm to the source pin.

Here we must point out a small subtlety: The algorithm
requires all paths connecting the components to the source
pin to be disjoint, but this is in general neither possible nor
desired. We therefore run every path search independently and
obtain a union of paths, which may contain loops and parallel
segments. These are removed by running a shortest-path tree
algorithm starting at the source at the very end. It might also be
beneficial to use thicker wires for the parts of the tree driving
multiple components, but this has not been implemented yet.

D. Lower and upper bounds

We will now shortly describe how we define dub when using
the Elmore delay model: Let (u, v) ∈ E(D) and s be the source
pin of N(v). We compute an approximately shortest Steiner tree
Y for N(v), and we will assume that all wires are located on
the lowest allowed wiring layers for N(v) using the default wire
type of the net. We compute wire resistances and capacitances
for Y as described in Section V-A and multiply them by some
parameter ζ ≥ 1 in order to obtain the ζ-scaled Elmore delay
dζY (s, v) from s to v in Y . We set dub(u, v) := dζY (s, v) + η,
where η is a second parameter. In our experiments, we set ζ
to 1.5 and η to 0.25 picoseconds.

The reasoning here is as follows. Multiplying all wire RC
values by ζ is roughly the same as multiplying all edge lengths
by ζ, so dζY (s, v) corresponds to the Elmore delay from s
to v in Y where we plan for a detour of factor ζ on every
edge in Y (and a few additional vias). η is a constant that is
added to give some margin for very short nets. We expect our
router to make bigger detours only in very few cases, so dub
should indeed be a reasonable upper bound in practice. Our
experiments clearly support this claim (see Figure 4).

For defining a lower bound dlb(u, v) for (u, v) ∈ E(D), we
let again s be the source pin of N(v) and Y be an approximately
shortest Steiner tree for N(v). Moreover, let resmin and capmin
denote the minimum wire resistance and capacitance per unit
length over all allowed routing layers for N(v). We define

dlb(u, v) := res(s)
(

capmin

∑
e=(x,y)∈E(Y)

dist(x, y) +
∑

v′∈N(v)\{s}

cap(v′)

)
+ dist(s, v) · resmin ·

(
1
2capmin · dist(s, v) + cap(v)

)
.

This is a lower bound if Y is a shortest Steiner tree for
N(v).

11

Algorithm 3 Timing-constrained global routing algorithm
1: for p = 1, . . . , pmax do
2: for each net N do
3: X ← [0
4: while X < 1 do
5: Call routing oracle for N to obtain a solution Y
6: ξ ←[min

{
1−X, 1

maxr∈R usgN,r(Y)

}
7: X ← [X + ξ
8: pricer ← [pricer · eγ·ξ·usgN,r(Y) for r ∈ R
9: for i = 1, . . . , n do

10: for each arrival time customer v do
11: a(v)← [COMPUTEAT(v)

12: pricer ← [pricer · eγ·n
−1·usgv,r(a(v)) for r ∈ R

13: Iterated randomized rounding
14: Rip-up and re-route

VI. OVERALL ALGORITHM

The overall global routing algorithm is summarized in
Algorithm 3. The resource sharing part consists of pmax

iterations. At the beginning of each iteration, all nets are
rerouted with the routing oracle (lines 2–8). Once a net N is
routed, the costs of consumed resources are updated according
to (2). Multiple iterations of the while loop are needed only if
usgN,r(Y) > 1 for some r ∈ R. This cannot happen often, as
shown in [29], hence the running time of Theorem 1.

Then, in lines 9–12, the arrival time oracle is called n times
for all v ∈ V (D). The proof in [29] allows to interleave the
calls for different v ∈ V (D), which we exploit to improve
convergence given the interdependency of arrival time costs at
neighboring vertices in the timing graph. When implementing
the subroutine COMPUTEAT() in line 11 by line 2 of Algorithm
1, we obtain a good fractional solution and, thus, delay
budgeting. Again after each call, the costs are updated.

Theorem 14: Let ω > 0. Given a routing oracle with
approximation ratio σ and pmax = O(ω−2 log |R|), lines 1–12
of Algorithm 3 compute a (fractional) solution that minimizes
the maximum resource usage up to a factor σ(1+ω), assuming
that this minimum is between 1

2 and 2.
For nets with a bounded number of pins, we can obtain

σ = 1 in the linear delay model. Then, if there is a global
routing that satisfies all routing and timing constraints, the
algorithm computes a fractional solution such that no edge is
overloaded by more than a factor 1 + ω and the worst slack is
at least −relax−ωH , where H is the constant from Lemma 6.
PROOF. This follows from Theorem 1, Lemma 5, Lemma 6,
Lemma 7, and Corollary 12.

The assumption that the minimum λ? in (1) is within [12 , 2]
is usually satisfied in practice, but one could also do without
this assumption, using binary search [29]. We remark that the
routing oracle as well as the arrival time oracle can be called
for many customers in parallel.

In practice, we implement the subroutine COMPUTEAT()
in line 11 by Newton’s method as described in the proof of
Theorem 9, using 3 iterations in each call, and reduce n in the
outer loop in line 9 from 100 to 15. This gives comparable
overall results in significantly less runtime.

When the resource sharing part finishes, we generate eight
routing solutions. For each solution we pick for each net
independently one of the computed Steiner trees randomly.
We then select the solution minimizing the maximum resource
usage. Finally, we try to eliminate remaining congestion or
delay violations by traditional rip-up and re-route.

VII. EXPERIMENTAL RESULTS

We integrated our new global routing algorithm with static
timing constraints (Algorithm 3) with oracles for the linear
delay model (Section IV) and the RC delay model (Section V)
into BonnRoute, an existing timing-unaware resource sharing
implementation for 3D global routing [12], that is the “golden”
global routing algorithm in the IBM microprocessor design
flow. We chose pmax = 25 and γ = 5 in Algorithm 3.

Experiments were carried out on 7 microprocessor units in 22
and 14 nm technology. The experiments were conducted under
Linux on an Intel Xeon E5-2667v2 server running at 3.30 GHz.
All listed running times refer to parallel program executions
using the available 16 cores. The running times reflect the wall
time for running either the reference run or the global router
without loading the data into the design environment.

All reported slack numbers were computed with IBM
EinsTimer, which is also the timing engine for final sign-off.
Depending on the experiments we either used it with a linear
delay model on unbuffered netlists or with the RICE delay
model [35] on highly optimized buffered netlists.

An overview of the results can be found in Tables I and II.
They are arranged as follows. Besides unit names the first
column shows the number of nets followed by the cycle
time. We report worst slack (WS), total negative endpoint
slack (TNS), total routing overload (OL), wiring length (WL),
the number of vias (Vias), and running times (Wall time)
for multiple experiments. The experiments are described in
Sections VII-A and VII-B.

We compare our new algorithm with bounds, with an
industrial flow, and with preliminary algorithms from [14]
(ICCAD 2015) and [39] (ICCAD 2016). In [14] and [39] we
had larger arrival time intervals (equivalent to dub ≡ ∞) and
the simple arrival time oracle from Lemma 7.

For the rows “Bounds”, we computed WS and TNS as
described in Sections IV-D and V-D (congestion-unaware).
Note that these are not always lower delay bounds in the RC
delay case. The OL is computed with BonnRoute global router
[12] as it is run in the design flow minimizing wire length and
vias. For WL and Vias, we computed short 3D Steiner trees
(timing- and congestion-unaware).

A. Results for linear delays

For linear delays, the input netlists are unbuffered and the
result of the global placement optimization phase in the IBM
flow. All delays in these experiments were computed using the
linear delay model from Section IV-A. The results are shown
in Table I.

The lines “CATALYST” refer to the layer assignment
algorithm [44], which is part of the IBM microprocessor design
flow and computes a congestion-aware layer assignment. This

12

Unit Experiment WS TNS OL WL Vias Wall time
(#nets, [ps] [ns] [m] [K] [h:mm:ss]
cycle time)
US ”Bounds” -57 -5 0 1.99 866 -
(141 238, CATALYST [44] -72 -39 0 2.06 1 429 0:09:36
240 ps) ICCAD 2015 [14] -58 -11 0 2.09 1 516 0:05:53

Fractional -58 -9 0 2.10 1 572 0:01:17
Algorithm 3 -58 -8 0 2.08 1 487 0:04:56

UF ”Bounds” -44 -6 0 5.04 942 -
(156 800, CATALYST [44] -91 -35 2 5.11 1 923 0:13:59
264 ps) ICCAD 2015 [14] -44 -11 0 5.25 2 304 0:27:39

Fractional -44 -6 0 5.36 2 304 0:03:12
Algorithm 3 -44 -6 0 5.17 2 007 0:08:16

UP ”Bounds” -5 -0.0 0 9.12 1 311 -
(305 689, CATALYST [44] -33 0 4 9.28 1 977 0:09:01
790 ps) ICCAD 2015 [14] -33 0 0 9.28 2 500 0:10:24

Fractional -39 -0.2 0 9.27 2 227 0:01:39
Algorithm 3 -33 -0.1 0 9.27 2 192 0:08:59

UL ”Bounds” -237 -32 0 8.54 2 152 -
(361 684, CATALYST [44] -279 -82 7 8.59 3 282 0:18:50
184 ps) ICCAD 2015 [14] -237 -41 164 8.86 3 580 0:18:45

Fractional -237 -39 173 8.84 3 443 0:03:46
Algorithm 3 -237 -37 158 8.86 3 443 0:13:05

UV ”Bounds” -38 -6 0 13.04 1 818 -
(415 592, CATALYST [44] -68 -27 0 13.24 3 373 0:10:55
208 ps) ICCAD 2015 [14] -43 -17 0 13.33 5 065 0:23:47

Fractional -43 -17 0 13.36 5 027 0:02:59
Algorithm 3 -43 -11 0 13.28 3 870 0:12:48

UN ”Bounds” -156 -38 554 10.66 2 170 -
(478 217, CATALYST [44] -174 -394 1 665 11.10 3 433 0:13:36
208 ps) ICCAD 2015 [14] -178 -151 1 350 11.25 4 196 0:19:37

Fractional -179 -147 1 577 11.27 3 838 0:04:16
Algorithm 3 -177 -118 1 386 11.25 4 027 0:17:50

UI ”Bounds” -80 -1 380 0 36.37 7 579 -
(1 257 242, CATALYST [44] -129 -1 829 6 36.77 12 266 1:05:06
184 ps) ICCAD 2015 [14] -81 -1 479 0 37.12 15 429 2:04:57

Fractional -81 -1 442 0 36.97 12 217 0:15:40
Algorithm 3 -80 -1 442 0 37.07 13 406 0:53:04

TABLE I
RESULTS ON INDUSTRIAL MICROPROCESSOR UNITS (UNBUFFERED

NETLISTS) USING THE LINEAR DELAY ROUTING ORACLE.

is passed as a constraint to the timing-unaware global router.
In addition to layer assignments, the reference run pre-assigns
netlength bounds to critical nets and bounds on the source-
to-sink distances of high fanout nets. Finally, it refines the
layer-assignment for improving worst slacks using incremental
global routing.

The rows “Fractional” and “Algorithm 3” show our algorithm,
where “Fractional” refers to the fractional solution after the
resource sharing phase (lines 1–12), and “Algorithm 3” to the
final results after rip-up and re-route. In Algorithm 3, we ignore
all layer assignments and length bounds.

On most instances our new algorithm could improve the
worst slack and the total negative slacks compared to the
CATALYST approach or almost reach the slack bounds. On
US, UF, UL, UV, and UI the slack improvements are significant.
Note that the larger WS deviation of 28 ps from the bound
on UP can be explained by the larger cycle time and path
delays compared to the other units. The relative deviation is
less than 5% and comparable. On UN, Algorithm 3 achieves a
better TNS and OL than CATALYST [44], but at the cost of a
slightly smaller WS. All other reported routing overloads are
small and exhibit inaccuracies of the global routing model at
macro borders. Typically, they do not impact detailed routability.
Algorithm 3 embeds timing-aware routing topologies, leading
to slightly larger wire length. Its flexibility to use higher routing
layers only partially results in more vias.

Due to faster convergence of the arrival times our new
algorithm yields slightly better solutions in significantly shorter

Unit Experiment WS TNS OL WL Vias Wall time
(#nets, [ps] [ns] [m] [k] [h:mm:ss]
cycle time)
US ”Bounds” -130 -383 0 2.05 1134 -
(174 436, BonnRoute [12] -165 -476 0 2.14 1514 0:03:04
240 ps) ICCAD 2016 [39] -138 -404 0 2.16 1581 0:07:01

Algorithm 3 -132 -403 0 2.16 1579 0:06:40
UF ”Bounds” -118 -152 0 4.82 1786 -
(254 208, BonnRoute [12] -125 -291 0 4.91 2303 0:03:01
264 ps) ICCAD 2016 [39] -118 -196 0 4.92 2527 0:13:22

Algorithm 3 -118 -192 0 4.93 2519 0:12:14
UP ”Bounds” -54 -3 0 9.29 1812 -
(376 664, BonnRoute [12] -83 -8 0 9.49 2309 0:02:32
790 ps) ICCAD 2016 [39] -53 -3 0 9.51 2864 0:15:00

Algorithm 3 -53 -3 0 9.49 2517 0:09:21
UL ”Bounds” -243 -60 52 8.88 2817 -
(482 340, BonnRoute [12] -243 -85 52 8.96 3785 0:03:20
184 ps) ICCAD 2016 [39] -243 -64 52 8.97 4255 0:24:37

Algorithm 3 -243 -63 52 8.96 4093 0:17:12
UV ”Bounds” -66 -158 0 13.41 2914 -
(584 336, BonnRoute [12] -97 -516 0 13.69 3616 0:04:05
208 ps) ICCAD 2016 [39] -71 -235 0 13.64 4336 0:21:26

Algorithm 3 -69 -232 0 13.63 4295 0:19:16
UN ”Bounds” -308 -622 695 11.24 3601 -
(632 226, BonnRoute [12] -531 -1312 695 11.66 4233 0:04:33
208 ps) ICCAD 2016 [39] -312 -865 732 11.69 4512 0:24:20

Algorithm 3 -312 -772 750 11.70 4525 0:22:48
UI ”Bounds” -79 -215 0 36.63 10681 -
(1 681 671, BonnRoute [12] -169 -1347 0 36.84 14525 0:15:24
184 ps) ICCAD 2016 [39] -91 -552 0 36.94 16506 2:19:53

Algorithm 3 -96 -520 0 37.00 16305 2:04:54
Algorithm 3 fast -97 -630 4 36.89 15174 1:02:46

TABLE II
RESULTS ON INDUSTRIAL MICROPROCESSOR UNITS (BUFFERED NETLISTS)

USING THE RC TREE ROUTING ORACLE.

time compared to [14]. The comparison between fractional and
final solutions shows that we can recover or even improve the
quality of the fractional solution after rounding and rip-up and
re-route.

The results suggest that on unbuffered instances layer
assignment approaches have a limited power to fulfill timing
constraints. First, assignments of large nets to high layers
are often inhibited as they create congestion by also forcing
connections to uncritical sinks to the limited routing space on
the assigned layers. Second, the timing-unaware global routing
may choose unfavorable topologies. The predefined bounds
on netlengths or source-to-sink-distances in the reference run
cannot be chosen sufficiently tight if routability should be
preserved. In contrast, the delay prices and the implicit delay
bounds computed throughout our algorithm ensure that the
eventually critical connections are short and use fast layers.

B. Results for RC delays

For RC delays, the input data is taken from the IBM design
flow after placement and global timing optimization, including
buffering, gate sizing, and layer assignment, just before the
routing phase. We could ignore the layer assignment, but we
currently obtain even better results when using this information.
The industrial flow generates netlength bounds on individual
timing critical nets as additional constraints. We used these
bounds in the reference run BonnRoute [12] in the timing-
unaware standard mode, but neglected them in Algorithm 3.

The results are shown in Table II. Although the timing-
constrained run is internally using the Elmore delay model, the
timing numbers shown in Table II are using RICE extractions
[35]. Compared to the reference run, the timing metrics are

13

Linear delay model RC delay model
”Bounds” CATALYST [44] Algorithm 3 ”Bounds” BonnRoute [12] Algorithm 3

Fig. 5. Congestion plots and slack histograms for several algorithms on instance UI with linear and RC delay model.

clearly improved on every design while the overload hardly
increases.

The only drawback of the new timing-constrained global
routing algorithm is the increase in running time. Compared to
[39], we could already reduce it. Further speed-up is possible
by refining the implementation or by using more CPU cores.
Alternatively, the effort for ripout & reroute (which we have
not parallelized yet) can be reduced as shown in the line
“Algorithm 3 fast” for the unit UI. After all, the running time
of our new global routing algorithm is still small compared to
the time spent in the subsequent steps such as detailed routing
and final clean-up.

C. Visualized results

A visual comparison of Algorithm 3 with the timing-unaware
and congestion-unaware global routing runs as well as the
reference runs can be found in Figure 5 for the largest
unit UI. In Figure 6, we show a typical progression of the
fractional solution after several iterations of the resource sharing
algorithm on UI. In both figures, the top rows show congestion
plots and the bottom rows show slack histograms. Colors range
from blue (uncritical) to violet (critical). The congestion plots
show the maximum congestion over all routing layers in the
three-dimensional global routing graph and the color red marks
the transition from routable to unroutable. The slack histograms
show the slack distribution of all gates, where each gate is
represented by its worst slack. Here, yellow represents slack
zero.

Figure 5 shows that, in constrast to the reference runs,
Algorithm 3 can almost achieve the (estimated) best possible
slack distribution. The congestion plots show that this is
achieved by a more effective use of global routing resources.

In Figure 6, we see some routing congestion and timing
violations after the first iteration. During the course of the
algorithm both routing and timing violations are improving
simultaneously and the worst violations are well balanced
among all resources.

VIII. CONCLUSION

Overall, our integration of static timing constraints into the
resource sharing algorithm for global routing improves the
quality for both the linear delay and the RC delay model

compared to approaches from an existing industrial design
environment. Theorem 14 establishes a sound theoretical basis
for our model. The running time overhead is still acceptable and
could be reduced further. Summarizing, this work demonstrates
how to efficiently integrate static timing constraints into global
routing for a better quality of results.

REFERENCES

[1] Albrecht, C., Kahng, A.B., Mandoiu, I., Zelikovsky, A.: Floorplan
evaluation with timing-driven global wireplanning, pin assignment and
buffer/wire sizing. ASP-DAC, 2002, 580–587.

[2] Ao, J., Dong, S., Chen, S., Goto, S.: Delay-driven layer assignment
in global routing under multi-tier interconnect structure. ISPD, 2013,
101–107.

[3] Arora, S.: Polynomial time approximation schemes for Euclidean, traveling
salesman and other geometric problems Journal of the ACM 45, 1998,
753–782.

[4] Bartoschek, C., Held, S., Rautenbach, D., Vygen, J.: Efficient generation
of short and fast repeater tree topologies. ISPD, 2006, 120–127.

[5] Boese, K.D., Kahng, A.B., Robins, G.: High-performance routing trees
with identified critical sinks. DAC, 1993, 182–187.

[6] Boese, K.D., Kahng, A.B., McCoy, B.A., Robins, G.: Rectilinear Steiner
trees with minimum Elmore delay. DAC, 1994, 381–386.

[7] Boese, K.D., Kahng, A.B., McCoy, B.A., Robins, G.: Near-optimal critical
sink routing tree constructions. IEEE TCAD 14, 1995, 1417–1436.

[8] Brazil, M., Zachariasen, M.: Optimal Interconnection Trees in the Plane.
Springer, Berlin, 2015.

[9] Chuzhoy, J., Gupta, A., Naor, J. S., Sinha, A.: On the approximability
of some network design problems. ACM Transactions on Algorithms 4,
2008, Article 23.

[10] Elmore, W.: The transient response of damped linear networks with
particular regard to wideband amplifiers. Journal of Applied Physics 19,
1948, 55–63.

[11] Garey, M. R., Johnson, D. S.: The rectilinear Steiner tree problem is
NP-complete. SIAM Journal on Applied Mathematics 32, 1977, 826–834.

[12] Gester, M., Müller, D., Nieberg, T., Panten, C., Schulte, C., Vygen,
J.: BonnRoute: Algorithms and data structures for fast and good VLSI
routing. ACM TODAES 18, 2013, Article 32.

[13] Held, S., Rotter, D.: Shallow-light Steiner arborescences with vertex
delays. IPCO, 2013, 229–241.

[14] Held, S., Müller, D., Rotter, D., Traub, V., Vygen, J.: Global routing
with inherent static timing constraints. ICCAD, 2015, 102–109.

[15] Hong, X., Xue, T., Huang, J., Cheng, C.-K., Kuh, E.S.: TIGER: an
efficient timing-driven global router for gate array and standard cell layout
design. IEEE TCAD 16, 1997, 1323–1331.

[16] Hougardy, S., Silvanus, J., Vygen, J.: Dijkstra meets Steiner: a fast
exact goal-oriented Steiner tree algorithm. arXiv:1406.0492. Mathematical
Programming Computation 9, 2017, to appear.

[17] Huang, J., Hong, X.-L., Cheng, C.-K., Kuh, E.S.: An efficient timing-
driven global routing algorithm. DAC, 1993, 596–600.

[18] Hu, J., Sapatnekar, S.S.: A timing-constrained simultaneous global
routing algorithm. IEEE TCAD 21, 2002, 1025–1036.

[19] Hu, S., Li, Z., Alpert, C.J.: A fully polynomial-time approximation
scheme for timing-constrained minimum cost layer assignment. IEEE
Transactions on Circuits and Systems II: Express Briefs 56, 2009, 580–584.

14

iteration 1 iteration 2 iteration 3 iteration 4 iteration 5 iteration 10 iteration 15 iteration 25

Fig. 6. Congestion plots and slack histograms after several stages of the resource sharing phase of Algorithm 3 with the linear delay model.

[20] Hwang, F.: On Steiner minimal trees with rectilinear distance. SIAM
Journal on Applied Mathematics 30, 1976, 104–114.

[21] Kadodi, T.: Steiner routing based on Elmore delay model for minimizing
maximum propagation delay. Master’s Thesis, Japan Advanced Institute
of Science and Technology, 1999.

[22] Kahng, A.B., Robins, G.: On Optimal Interconnections for VLSI. Kluwer
Academic Publishers, Boston, 1995.

[23] Karp, R.: Reducibility among combinatorial problems. Complexity of
Computer Computations, R. Miller and J. Thatcher, eds., Plenum Press,
New York, 1972, 85–103.

[24] Khuller, S., Raghavachari, B., Young, N.: Balancing minimum spanning
trees and shortest-path trees. Algorithmica 14, 1995, 305–321.

[25] Lee, T.-H., Chang, Y.-J., Wang, T.-C.: An enhanced global router with
consideration of general layer directives. ISPD, 2011, 53–60.

[26] Maßberg, J., Vygen, J.: Approximation algorithms for a facility location
problem with service capacities. ACM Transactions of Algorithms 4,
2008, Article 50.

[27] Meyerson, A., Munagala, K., Plotkin, S.: Cost-distance: two metric
network design. FOCS, 2000, 624–630.

[28] Müller, D.: Optimizing yield in global routing. ICCAD, 2006, 480–486.
[29] Müller, D., Radke, K., Vygen, J.: Faster min-max resource sharing in

theory and practice. Mathematical Programming Computation 3, 2011,
1–35.

[30] Moffitt, M.D., Sze, C.N.: Wire synthesizable global routing for timing
closure. ASP-DAC, 2011, 545–550.

[31] Peyer, S.: Elmore-Delay-optimale Steinerbäume im VLSI-Design.
Diploma’s Thesis (in german), Research Institute for Discrete Mathematics,
University of Bonn, 2000.

[32] Peyer, S., Zachariasen, M., Jørgensen, D.G.: Delay-related secondary
objectives for rectilinear steiner minimum trees. Discrete Applied
Mathematics 136, 2004, 271–298.

[33] Raghavan, P., Thompson, C.D.: Randomized rounding: a technique for
provably good algorithms and algorithmic proofs. Combinatorica 7, 1987,
365–374.

[34] Rao, S.B., Smith, W.D.: Approximating geometrical graphs via ”spanners”
and ”banyans”. STOC, 1998, 540–550.

[35] Ratzlaff, C.L., Pillage, L.T.: RICE: rapid interconnect circuit evaluation
using AWE. IEEE TCAD 13, 1994, 763–776.

[36] Rubinstein, J., Penfield, P., Horowitz, M.A.: Signal delay in RC tree
networks. IEEE TCAD 2, 1983, 202–211.

[37] Samanta, R., Erzin, A.I., Raha, S., Shamardin, Y.V., Takhonov, I.I.,
Zalyubovskiy, V.V.: A provably tight delay-driven concurrently congestion
mitigating global routing algorithm. Applied Mathematics and Computa-
tion 255, 2015, 92–104.

[38] Saxena, P., Liu, C.L.: Optimization of the maximum delay of global
interconnects during layer assignment. IEEE TCAD 20, 2001, 503–515.

[39] Scheifele, R.: RC-aware global routing. ICCAD, 2016, Article 21.
[40] Scheifele, R.: Steiner trees with bounded RC-delay. Algorithmica,

pre-published online, 2016, 1–24.
[41] Shragowitz, E., Keel, S.: A global router based on a multicommodity

flow model. Integration, the VLSI Journal 5, 1987, 3–16.
[42] Vittal, A., Marek-Sadowska, M.: Minimal delay interconnect design

using alphabetic trees. DAC, 1994, 392–396.
[43] Vygen, J.: Near-optimum global routing with coupling, delay bounds,

and power consumption. IPCO, 2004, 308–324.
[44] Wei, Y., Li, Z., Sze, C.C.N., Hu, S., Alpert, C.J., Sapatnekar S.S.:

CATALYST: planning layer directives for effective design closure. DATE,
2013, 1873–1878.

[45] Yan, J.-T., Lin, S.-H.: Timing-constrained congestion-driven global
routing. ASP-DAC, 2004, 683–686.

[46] Yan, J.-T., Lee, C.-F., Chen, Y.-H.: Multilevel timing- constrained full-
chip routing in hierarchical quad-grid model. ISCAS, 2006, 5439–5442.

Stephan Held received Diploma and Ph.D. degrees
in mathematics from the University of Bonn. From
2009–2010 he was post-doc at the Georgia Institute
of Technology. From 2010–2013 he was assistant
professor and since 2013 he is an associate professor
at the Research Institute for Discrete Mathematics,
University of Bonn. His research interests include
combinatorial optimzation and chip design.

Dirk Müller received the Diploma and Ph.D. degree
in computer science in 2003 and 2009, respectively,
from the University of Bonn, Germany. He is cur-
rently working as a postdoc researcher on electronic
design automation, with a focus on combinatorial
optimization applied to routing, at the Research
Institute for Discrete Mathematics, University of
Bonn.

Daniel Rotter received his Bachelor and Master of
Science degrees in mathematics at the University
of Bonn in 2010 and 2012, respectively. He is
currently pursuing the Ph.D. degree in mathematics
from the Research Institute for Discrete Mathematics,
University of Bonn. His current research interest
includes combinatorial optimization and VLSI design
with focus on global buffering.

Rudolf Scheifele is a PhD student at the University
of Bonn, Germany, where he received his Bachelor
and Master of Science degrees in mathematics in
2011 and 2013, respectively. He now continues
his PhD studies in mathematics, which includes
working on BonnRoute. His research interest focuses
mainly on global routing, in particular mathematical
optimization problems that arise in this area.

Vera Traub is a graduate student at the University of
Bonn, Germany, where she received her Bachelor of
Science degree in mathematics in 2015. Her research
interest focuses on global routing and the travelling
salesman problem.

Jens Vygen (PhD Bonn 1997) is professor of discrete
mathematics of the University of Bonn since 2003.
He is also founding member and principal investigator
of the Hausdorff Center for Mathematics. Vygen is
managing two cooperations with industry, including
the BonnTools development. He is author of two
textbooks, many papers, and he has served as editor
of seven scientific journals. His research interests
include combinatorial optimization and chip design.

