
1

Provably Fast and Near-Optimum Gate Sizing
Siad Daboul, Nicolai Hähnle, Stephan Held, and Ulrike Schorr

Abstract—We present a new approach for the cell selection
problem based on a resource sharing formulation, which is a
specialization of Lagrangian relaxation with multiplicative weight
updates. For the convex continuous gate sizing problem, we can
prove fast polynomial running times. This theoretical result also
gives some justification to previous heuristic multiplicative weight
update methods.

For the discrete cell selection problem, where voltage thresh-
olds can also be chosen, we employ the new algorithm heuris-
tically and achieve superior results on industrial benchmarks
compared with one of the previously best known algorithms,
and competitive results on the ISPD 2013 benchmarks. Finally
we demonstrate how the approach can be parallelized effectively
achieving speed-ups of up to 16.

Index Terms—Gate sizing, threshold voltage, power optimiza-
tion, algorithms, resource sharing, very large scale integration

I. INTRODUCTION

GATE SIZING and voltage threshold (Vt) optimization
are essential to achieve timing closure and minimize the

power dissipation of integrated circuits. The task to determine
sizes and Vt levels for the gates in the netlist (cell selection
problem) has been studied extensively in the literature. A
large variety of approaches was proposed, for example linear
programming [5], network flows [35], delay or slew budgeting
[27], [13], sensitivity-based heuristics [16], [21], interior point
methods [37], [2], or Lagrangian relaxation [3], [41], [44],
[29], [9]. A recent survey can be found in [14].

Under two simplifying assumptions, namely 1) convex or
convexifiable delay functions, e.g. RC delay models, 2) contin-
uously sizable circuits and a single Vt level, the problem turns
into a convex optimization problem, as shown in [8]. Under
these assumptions and if a feasible solution exists, the cell
selection problem can be solved close to optimality, e.g. by the
projected subgradient method applied to the Lagrangian dual
function [3], or with interior point methods [37], [2]. How-
ever, for large instance sizes interior point methods become
impracticable as each iteration has a super-quadratic running
time [41], [20]. In contrast, each iteration of the projected
subgradient method solves a Lagrangian subproblem in near-
linear time [6], but without good bounds on the number of
subgradient steps.

The continuous relaxation can be used as a starting point
for rounding to a discrete solution [17], [32].

Signoff delay functions are typically not convexifiable with-
out loss of accuracy. Furthermore, despite attempts to combine
sizing and multiple Vt levels in a single formulation [39],
no useful convex relaxation is known so far. Thus, many
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successful approaches, in particular those achieving the best
results on the ISPD 2013 benchmarks [28], use Lagrangian
relaxation heuristically, making always discrete cell choices
and using accurate delay functions [22], [24], [9], [36], [33],
[34]. Interestingly, all these recent papers as well as [41]
update the Lagrangian multipliers multiplicatively and not in
subgradient direction.

In this paper we propose a new algorithm for the cell se-
lection problem by modeling it as a resource sharing problem
[26], which is solved by a special multiplicative update of
Lagrange multipliers. Resource sharing has a long history
in global routing, where it has recently been extended to
timing-constrained global routing [15]. However, we use a
different model of timing constraints proposed in [11]. Instead
of modeling delay constraints through a static timing graph,
we use an individual constraint for each signal path.

For the continuous gate sizing problem with convex delay
functions our algorithm combines the advantages of prov-
ably fast sizing iterations as in the Lagrangian relaxation
approaches with a provably small number of iterations as in
interior point methods. This leads to an overall fast algorithm
for the continuous gate sizing problem.

We use the new algorithm heuristically to tackle real-
world cell selection instances with non-convexifiable delay
functions, discrete cell sizes, and multiple Vt levels. The main
contributions of this paper are:

• A new cell selection algorithm based on the resource
sharing model, providing a provably fast overall conver-
gence for the continuous gate sizing problem with convex
delays.

• Natural extensibility to incorporate further constraints
such as placement density or signal integrity.

• A practical implementation, where we use the new algo-
rithm heuristically for discrete and non-convex instances.

• A new parallelization paradigm with high speedups
demonstrated on up to 44 cores.

• On state-of-the-art microprocessors provided by our in-
dustrial partner IBM, our algorithm improves results of
recent approaches [33], [34] at much shorter running
times.

• Experimental results on the ISPD 2013 benchmarks
demonstrate competitiveness with the best known results
[9].

The remainder of this paper is organized as follows: In
Section II we provide the problem formulation. Our main
theoretical result, the modeling and solving of gate sizing
as a resource sharing problem, is presented in Section III.
Then, in Section IV, we present our adaption for the discrete
cell selection problem, followed by experimental results in
Section VI and conclusions.
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II. PROBLEM FORMULATION

We denote the set of gates with G and the set of feasible cell
vectors with X = (Xg)g∈G , where Xg is the set of alternative
cell types for gate g ∈ G . A solution x ∈ X specifies a cell
type xg ∈ Xg for every gate g ∈ G.

Furthermore, we assume that timing constraints are modeled
by a timing graph G = (V,E) and delay functions delaye :
X → R for all edges e ∈ E that specify the delay delaye(x)
of e given a solution x. Signals start at one of the input vertices
Vin ⊂ V , e.g. primary inputs or register outputs, and end at
one of the output vertices Vout ⊂ V , e.g. primary outputs or
register inputs. Furthermore, we assume that for each gate
g ∈ G there is a function powerg : Xg → R+ specifying the
power consumption for choosing a specific cell type for g. The
total power consumption is simply the sum of the gate power
values. The cell selection problem can then be formulated as
follows:

min power(x) :=
∑
g∈G

powerg(xg) (1)

s.t. av + delaye(x) ≤ aw ∀ e = (v, w) ∈ E
av ≥ 0 ∀ v ∈ Vin
av ≤ T ∀ v ∈ Vout
x ∈ X,

where powerg(xg) denotes the power consumption of cell type
xg , av the arrival time at v ∈ V , and T the desired clock
cycle time. For a clearer presentation we make the simplifying
assumption that all signals start at time 0 and all required
arrival times equal a unique clock cycle time T .

An equivalent formulation forces each path delay to be
bounded by T . To this end, let P denote the set of (inclusion-
wise) maximal paths in G, i.e. the set of paths between a signal
start and end point. Then (1) is equivalent to

min power(x) :=
∑
g∈G

powerg(xg) (2)

s.t.
∑

e∈E(P )

delaye(x) ≤ T ∀ P ∈P

x ∈ X,
where E(P ) ⊆ E denotes the set of timing graph edges in
path P . At a first glance, the path formulation (2) appears
inferior due to the possibly exponential number of paths and,
thus, constraints. However, we will show how to employ this
model efficiently.

Note that in early design stages, gate sizing is rather a
feasibility problem, where a solution maximizing the total
negative slack (TNS)∑

v∈Vout

min{0, T − av} (3)

is desired. As reported by [34], the resulting problem for-
mulation leads to aggressive power minimization in failing
paths that merge into more critical ones and, thus, are hidden
from the endpoints. In such a scenario designers rather want
to achieve a solution that also maximize the total negative path

slack (TPNS)

TPNS(x) :=
∑
P∈P

min

0, T −
∑

e∈E(P )

delaye(x)

 . (4)

As it is #P-hard to compute (4) as shown by [25], we employ
the true total negative slack TTNS introduced by [34] to
account for failing paths that are hidden in the TNS. TTNS
is defined as the sum of negative slacks at timing endpoints
and all non-critical subpaths with negative slacks. It is similar
similar to TPNS and has the advantage that it can be computed
in linear time.

III. CONTINUOUS GATE SIZING

In this section we will present a new provably fast algorithm
for the continuous gate sizing problem with convex delay
functions. To this end, we make a few simplifying but usual
assumptions, e.g. compare [8], [3].

A1 X = [l, u], where l, u ∈ RG>0 and 1 ≤ l ≤ u,
where umax := max{ug : g ∈ G} is a small constant
compared to the netlist size.

A2 For all e ∈ E, the function delaye(x) is convex and
for all g ∈ G powerg(x) is convex and nondecreas-
ing.

Note that after scaling sizes, assumption A1 is usually fulfilled
for the continuous relaxation of a finite gate library, where
umax is in the range of 60–130, e.g. 128 on the ISPD 2013
benchmarks [28].

Furthermore, by A1 we have max{ug

lg
: g ∈ G} ≤ umax.

Assumption A2 is fulfilled for the RC-delay model using
the transformed model: delaye(ex) with ex = (exg )g∈G in
the domain logX := [log l, log u], where the logarithm of l
and u is taken component-wise [8], [3]. With this variable
transformation the sizing problem can be formulated as a
convex program.

For our running time analysis we need a few more technical
assumptions that are usually fulfilled in practice:

A3 power(u)/power(l) ≤ Û ,
A4 the gradient ∇power(x) = ∇

∑
g∈G powerg(xg) is

Lipschitz continuous with bound KP ,
A5 the gradient ∇

∑
e∈E delaye(x) is Lipschitz contin-

uous with bound KD, and
A6 minx∈X,e∈E delaye(x) ≥ dmin > 0 (dmin ∈ R),

where Û ,KP and KD are technology-specific constants inde-
pendent of the netlist. Note that A3 and A4 hold for prevalent
linear power functions with KP = maxg∈G,x∈Xg

powerg(x)

and Û ≤ umax. Exemplary, we will also prove in Section III-G
that A5 holds for the RC-delay model if the fan-in and fan-
out of each gate is bounded by a constant. Finally, A6 usually
holds because a gate of interest will at least drive the input
pin capacitance of another gate.

A. The Min-Max Resource Sharing Problem

We will model gate sizing as a min-max resource sharing
problem, which is defined as follows (see [26]). An instance
of the min-max resource sharing problem consists of a finite
set of resources R, a finite set of customers C , and for each
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customer c ∈ C a convex set of feasible solutions Bc. A
convex function usgc : Bc → RR

≥0 indicates the resource
usages of the feasible solutions for each customer c.

The task is to find a solution for all customers approximately
minimizing the maximum resource usage, i.e. to find xc ∈ Bc

for all c ∈ C approximately attaining

λ∗ := inf
{

max
r∈R

∑
c∈C

(usgc(xc))r : xc ∈ Bc (c ∈ C )
}
. (5)

The algorithms that we will employ require an oracle
function fc : RR

≥0 → Bc for each customer c that computes
for resource weights ω ∈ RR

≥0 a feasible solution xc ∈ Bc

approximately minimizing the weighted resource usage of c:

ωᵀusgc(xc) ≤ η · inf
x′c∈Bc

ωᵀusgc(x
′
c). (6)

Here η ≥ 1 is the approximation factor of the oracle. In our
case each Bc will be a compact set and the infimum in (6) is
always attained. The problem

min
xc∈Bc

ωᵀusgc(xc)

can be considered as the Lagrangian relaxation of a certain
feasibility problem for customer c with multipliers ω.

The fastest algorithm for solving the resource sharing prob-
lem was developed in [26] for an application in global routing
in chip design. We refer to this paper for a broader overview
of previous work.

At the core of the algorithm lies the multiplicative weight
update method, which was introduced in [31] for combinatorial
packing problems. The basic idea is to introduce a weight ωr
for each resource r ∈ R. The algorithm iteratively makes calls
to the oracles of the customers c ∈ C . Based on the solution xc
returned by the oracle, the weight for each resource is updated
multiplicatively

ωr 7→ ωr · eγ·usgc(xc)r ,

where γ > 0 is a parameter that will be chosen based on the
desired solution quality and running time. If yr specifies the
sum of total resource usages over all previous iterations, the
weight can be computed equivalently via

ωr = eγ·yr . (7)

B. Gate Sizing as Min-Max Resource Sharing Problem

We model continuous gate sizing as a resource sharing
problem in the following way. Assume for the time being
that we are given a power budget B. Then the following
inequality system describes all solutions meeting this budget
and all timing constraints:

power(x) ≤ B,∑
e∈E(P )

delaye(x) ≤ T ∀ P ∈P,

x ∈ X.

(8)

By A2 the set of feasible solutions of (8) is convex. If we can
approximate this feasibility problem, we can also approximate
our original problem (2) by binary search on B. Here, an
approximately feasible solution may violate timing and power

I1

I2

I3

I4Z

(I1, Z, I3)

(I1, Z, I4)

(I2, Z, I3)

(I2, Z, I4)

Paths Resource usage

Figure 1. A sample instance together with the associated path resources and
their usages.

constraints by a factor (1 + ε). The feasibility problem (8)
motivates the following resource sharing formulation.

1) Resources: Every inequality in (8) defines a resource:

• The first inequality is represented by a single resource
power.

• Each inclusion-wise maximal path P ∈ P represents a
timing resource.

Thus, the set of resources is R = {power}∪P . This specific
way to model timing resources P was introduced in the
context of timing-constrained global routing in [43] and first
solved efficiently in [11].

2) Customers: It seems natural to represent each gate
g ∈ G by a customer, and to define that each customer
consumes delay of each path resource that is influenced by its
size, which typically would be all paths passing through the
driver pins of the input nets of g. However, for most edges
in G the delay depends on the sizes of several gates in a
non-separable way, such that changing the size of one gate
would change the delay usage of other gates. We overcome
this difficulty by representing all gates by a single customer
C = {G} with feasible solution set BG = X . The oracle
problem for the single gate customer is equivalent to the
Lagrangian subproblem in [3], as we will see in Section III-E.

3) Resource Usages: The resource usages are defined
by the quotients of left and right hand sides in the inequalities
of (8). More precisely, the power resource usage of the gate
customer solution x ∈ X is specified as

usgG,power(x) :=
power(x)

B
,

and the timing resource usage of a path resource P is defined
as

usgG,P (x) :=

∑
e∈E(P ) delaye(x)

T
.

Path resources are visualized in Figure 1.
By the definition of the resource usages and (8) we have
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Observation 1. A solution x ∈ X fulfills all timing constraints
in (2) and (8) if and only if

usgG,P (x) ≤ 1 for all P ∈P.

C. Computing all Resource Weights in Linear Time
In each iteration of the resource sharing algorithm we need

to compute a vector ω ∈ RR
≥0 with weights for the power

resource and each timing path resource. The weight depends
on the total resource usage from the previous iterations. Let
y ∈ RR

≥0 be the vector of total resource usages just before the
current weight update.

Computing the power resource weight is easy. Let ypower
be the total power usage consumed in the previous iterations.
According to (7), the power resource weight is given by

ωpower = eγ·ypower .

For the path resources it was shown in [11] that despite
their potentially exponential number, the resource weights can
be computed implicitly in linear time by decomposing them
into edge weights ωe (e ∈ E). An oracle function for the
gate customer computes for given resource weights ω ∈ RR

feasible sizes x for all gates such that the weighted resource
usage

ωpower
power(x)

B
+
∑
P∈P

ωP

∑
e∈E(P ) delaye(x)

T
(9)

is minimized up to a factor of η > 1. With implicit edge
weights

ωe :=
∑

P∈P: e∈E(P )

ωP , (10)

the sum (9) can be rewritten as

ωpower
power(x)

B
+
∑
e∈E

ωe
delaye(x)

T
. (11)

Note that the weights (ωe)e∈E fulfill the flow conser-
vation rule

∑
e∈δ−(v) ωe =

∑
e∈δ+(v) ωe because they are

derived from the path weights. As an interesting side effect,
the Karush-Kuhn-Tucker (KKT) conditions are fulfilled by
(ωe)e∈E without requiring an extra projection step as in the
Lagrangian relaxation based algorithm described in [3]. How-
ever, our algorithm does not depend on the KKT conditions.

Now suppose we are in iteration i + 1 of our algorithm
and that the total usage of path P ∈ P from the previous i
iterations is given by

yP =

i∑
k=1

ξ(k)usgG,P (x(k)) =
1

T

i∑
k=1

ξ(k)delayP (x(k)),

where x(k) ∈ X is the gate sizing solution computed by the
resource sharing algorithm in iteration k, and ξ(k) ∈ [0, 1] are
scale factors that we will specify in Section III-D. Similarly,
we define total usages for implicit edge resources:

ye :=
1

T

i∑
k=1

ξ(k) · delaye(x(k)) (12)

for all e ∈ E. It turns out that the edge weights (ωe)e∈E in
(10) can be computed from ye in linear time.

Lemma 2. (Hähnle [11]) The edge weights ωe for e ∈ E can
be computed in each iteration in time O(|E|+ |V |).

Proof. By (7) and (10), we have

ωe =
∑

P∈P:e∈E(P )

ωP =
∑

P∈P:e∈E(P )

exp (γ · yP )

=
∑

P∈P[Vin,v]

∑
Q∈P[w,Vout]

exp

γ · ∑
f∈P∪Q∪{e}

yf


= exp(γ · ye) ·

 ∑
P∈P[Vin,v]

exp

γ ·∑
f∈P

yf


︸ ︷︷ ︸

=: ωP[Vin,v]

·

 ∑
Q∈P[w,Vout]

exp

γ ·∑
f∈Q

yf


︸ ︷︷ ︸

=: ωP[w,Vout]

= exp(γ · ye) · ωP[Vin,v]
· ωP[w,Vout]

,

where P[Vin,v] denotes the set of all paths from an input
vertex to v and P[v,Vout] denotes the set of all paths from v to
an output vertex. All variables ωP[Vin,v]

, ωP[v,Vout]
(v ∈ V )

can be computed in linear time by traversing G once in
topological and once in reverse topological order according
to EDGEWEIGHTS in Algorithm 1.

Algorithm 1 EDGEWEIGHTS(γ, (ye)e∈E)

ωP[Vin,v]
= 1 (v ∈ Vin);ωP[v,Vout]

= 1 (v ∈ Vout);
for v ∈ V in topological order do
ωP[Vin,v]

=
∑

(u,v)∈E

(
eγ·y(u,v) · ωP[Vin,u]

)
;

end for
for v ∈ V in reversed topological order do
ωP[v,Vout]

=
∑

(v,w)∈E

(
eγ·y(v,w) · ωP[w,Vout]

)
;

end for
for (v, w) ∈ E in reversed topological order do
ω(v,w) = exp(γ · y(v,w)) · ωP[Vin,v]

· ωP[w,Vout]
;

end for
return ωE := (ωe)e∈E ;

D. Overall Resource Sharing Algorithm for Gate Sizing

We now describe details of our adaption of the resource
sharing algorithm from [26]. The algorithm is shown in
Algorithm 2. It takes as input all timing constraints, a power
budget, a SIZINGORACLE returning gate sizes minimizing
(11), a parameter γ and the number I of iterations.

The variable x ∈ RG≥1 stores a sum of gate sizing solutions,
and Ξ ∈ R≥0 a number. In the end, x

Ξ ∈ X will be the
mean of gate sizing solutions found throughout all iterations.
The variable ypower stores the total power resource usage and
variables yethe total implicit edge resource usage of e ∈ E
(defined in (12)),
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Algorithm 2 Resource sharing algorithm for gate sizing
Input: An instance of the gate sizing problem, a power budget

B, SIZINGORACLE(ω) for the gate customer, γ > 0, I ∈
N.

Output: Convex combination of gate sizes x ∈ conv(X).
1: x← 0, Ξ← 0;

2: ye ← 0 for all e ∈ E, ypower ← 0;

3: for i = 1, . . . , I do
4: ωpower ← eγ·ypower ;
5: ωE ←EDGEWEIGHTS(γ, yE); (Section III-C)
6: x′ ← SIZINGORACLE(ω); (Section III-E)
7: ξ ← min

{
B

power(x′) ,
T

||delay(x′)||∞

}
;

8: if ξ ≥ 1 then return x′;
9: ye ← ye + ξ delaye(x′)

T for all e ∈ E;

10: ypower ← ypower + ξ
power(x′)

B ;
11: x← x+ ξ · x′;
12: Ξ← Ξ + ξ;
13: end for
14: return 1

Ξx;

In each of the I iterations, the algorithm first computes
weights for the power and for all path resources calling
EDGEWEIGHTS, implicitly using edge usages and resources
as described in Section III-C.

Then, it calls the oracle function SIZINGORACLE(ω) to
compute a gate sizing solution x that approximately minimizes
the total weighted resource consumption ωᵀusgG(x) (11). This
is a critical step and we will present its details in Section III-E.

If the current solution x′ meets all constraints (8), we get
ξ ≥ 1 and the algorithm will stop and return x′. Otherwise, x′

has some resource usages above one and the solution as well
as the resource usages are scaled down so that their maximum
usage is bounded by 1 (lines 9–10). Finally, the factors of the
convex combination which is returned are updated (11–12).

In our resource sharing model there is only a single cus-
tomer G. Thus, we can omit a special while-loop in the original
algorithm from [26] that re-iterates over-consuming customers
multiple times before proceeding with the next customer. We
will instead capture these special re-iterations a priori in the
total number of iterations I . For a single customer the resource
sharing algorithm from [26] is essentially the same as the
scale-invariant multiplicative weights update algorithm from
[11]. The number of iterations will be discussed in Section
III-F.

E. Oracle Function for the Gate Customer

By setting λpower = ωpower/B and λe = ωe/T , we can
rewrite (9) as a Lagrange function similar to [3], [42], [24]
with weighted power:

L(λ, x) := λpowerpower(x) +
∑
e∈E

λedelaye(x). (13)

For the RC-delay model, the Lagrange function can be
minimized in polynomial time with a greedy algorithm as
proposed in Chu and Wong [6]. Under certain assumptions,
a solution x ∈ X with |(x∗i −xi)/x∗i | ≤ ε for all i = 1, . . . , n
can be computed in O(n log(1/ε)) time for ε > 0. However,
in our context we are interested in an approximation guarantee
on the value of (13), whose scale depends on the exponentially
growing weights.

Theorem 3. Assume that A1–A6 hold and let Tgrad be the
time that is needed to compute the gradient ∇L(λ, x), which
we also assume to dominate the time it takes for changing x
in gradient direction. Let further K̂ := max

(
KP

power(l) ,
KD

dmin

)
.

Then there exists an oracle for the gate customer that computes
for ω ∈ RR

≥0 and η > 1 a solution x ∈ X in time

O
(
TgradK̂

u2
max

η−1

)
such that the weighted resource usage (11)

of the gate customer is minimized up to a factor of η.

Proof. To simplify notation, we consider the minimization
of the transformed weighted resource usage L(λ, x) in (13)
instead of (11). For fixed resource weights λ its gradient
∇L(λ, x) is Lipschitz continuous in x by A4 and A5:

lip(λ) := max
x,y∈X

||∇L(λ, x)−∇L(λ, y)||∞
||x− y||∞

≤ λpowerKP + max
e∈E

λeKD.

We apply the well-known conditional gradient method of
Frank and Wolfe [10] to L(λ, x). Starting with an initial
solution x(0) ∈ X , in each iteration k of this descent method
a minimizer s := arg miny∈X〈y,∇L(λ, x(k))〉 of the linear
approximation at x(k) is computed and a step from x(k)

towards s is performed: x(k+1) := x(k) + θ(k)(s− x(k)) with
step size θ(k) = 2

k+2 . The linear minimization subproblem can
be solved in linear time: For each entry sg (g ∈ G) we set

sg =


lg if ∇L(λ, x(k))g > 0
ug if ∇L(λ, x(k))g < 0

x
(k)
g otherwise.

Let diamX := maxx,y∈X ||x− y||∞ ≤ umax be the
diameter of X that is bounded by umax by A1, and let
opt(λ) = minx∈X L(λ, x) be the minimum resource con-
sumption for weights λ. The convergence analysis of the
conditional gradient (see for example Jaggi [18]) yields that
after k ≥ 1 iterations

L(λ, x(k))− opt(λ) ≤ 2
lip(λ)

k + 2
diam2

X .

It follows that a solution x with L(λ, x)−opt(λ) ≤ η−1 can
be computed in O

(
lip(λ)u2

max

η−1

)
iterations.

Now let lbopt be a lower bound on opt(λ). We run the
conditional gradient method up to accuracy (η−1) · lbopt such
that L(λ, x) ≤ opt(λ) + (η− 1) · lbopt ≤ η · opt(λ) as desired.

It remains to find a good lower bound lbopt to prove the
desired total running time. In particular, we are interested in a
running time that is independent of the weights λ (and hence
independent of ω). We can bound

lbopt ≥ max
{
λpower · power(l),max

e∈E
λe · dmin

}
.
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This implies a bound for lip(λ)/lbopt:

lip(λ)/lbopt =
λpowerKP + maxe∈E λeKD

lbopt

≤ λpowerKP

λpowerpower(l)
+

maxe∈E λeKD

maxe∈E λedmin

=
KP

power(l)
+
KD

dmin
≤ 2K̂.

Thus, It takes O
(
lip(λ)u2

max

(η−1)·lbopt

)
= O

(
K̂
u2
max

η−1

)
iterations and

O
(
TgradK̂

u2
max

η−1

)
time to achieve an η-approximate solution.

F. Running Time Analysis

The running time depends on the problem width ρ, which is
defined as the maximum ratio by which a single customer can
overuse a resource in any solution compared to the optimum:

ρ := max

{
1, sup

{
(usgc(xc))r

λ∗
: r ∈ R, c ∈ C , xc ∈ Bc

}}
.

(14)

We will use the following lemma from [26].

Lemma 4 (Müller, Radke, and Vygen [26], Lemma 7). Let
0 < δ, δ′ < 1. Given an instance of the min-max resource shar-
ing problem with λ∗ ≤ 1, we can compute a

(
η(1 + δ) + δ′

λ∗

)
-

approximate solution using O(ρ(δδ′)−1η log |R|) calls to an
η-approximate oracle function.

Proof. Algorithm 2 is the resource sharing algorithm from
[26] with one minor modification. The original algorithm in
[26] has a mechanism to repeat oracle calls for a single cus-
tomer if the usage of a resource exceeds one. This mechanism
is important if many customers are present. In our case, we
have only a single customer and can simplify the algorithm
by setting the iteration count I to the worst case number of
iterations from [26] right away, i.e. choosing

I = O(ρ(δδ′)−1η log |R|).

and γ = δ
3η as in [26].

As |R| = |P| + 1, we obtain the following guarantee for
the continuous relaxation of the gate sizing problem:

Lemma 5. Assuming A1–A6, given a power budget B ∈
R≥0, and 0 < ε < 1, we can decide whether
λ∗ ≤ (1 + ε) or λ∗ > 1 using Algorithm 2 in time
O
(
u2

maxK̂ · Tgrad · ρ · Û · ε−3 log |P|
)

.

Proof. By A3, we have λ∗ ≥ power(l)/power(u) ≥ Û−1.
We apply Lemma 4 with δ = ε/4, η = 1 + δ and δ′ = δ/Û .
If λ∗ ≤ 1, we obtain a solution with maximum resource
usage at most

(
(1 + ε/4)2 + ε/4

)
≤ (1 + ε). Otherwise,

if the maximum resource usage of the solution is greater
than (1 + ε), we can conclude λ∗ > 1. By our choice of
η, δ, and δ′, Lemma 4, and Theorem 3, the running time is
O
(
u2
maxK̂·Tgrad

ε · ρ · Ûε2 log |P|
)

.

Finally, we apply binary search on B to minimize the total
power.

Theorem 6. Assuming A1–A6, ε > 0, and that the gate
sizing problem (2) has a feasible solution, we can com-
pute a gate sizing solution that minimizes the optimum
power up to a factor of (1 + ε) and violates any de-
lay constraint by at most a factor of (1 + ε) in time
O
(
u2

maxK̂ · Tgrad · ρ · Û · ε−3 log |P| log log Û
ε

)
.

Proof. Let ε′ = ε/4. We perform binary search among the
budgets Bi := power(l) · (1 + ε′)i for i = 0, . . . , imax, where
imax = min{i ∈ N0 : power(l) · (1 + ε′)i ≥ power(u)} =

O( log Û
ε′ ). For every tested budget Bi, we call Algorithm 2

with accuracy ε′ to decide whether Bi is feasible up to a
factor (1 + ε′), i.e. the maximum resource usage and λ∗ do
not exceed (1 + ε′) or infeasible, i.e. the maximum resource
usage exceeds (1 + ε′) and, thus, λ∗ > 1.

As the instance is feasible the binary search will identify a
locally smallest index i0 ∈ N0 such that we find a solution
with maximum usage 1 + ε′ for the instance with budget Bi0 .

Let B? be the optimum budget. For all Bi ≥ B? by
Lemma 5, Algorithm 2 returns a solution in which the maxi-
mum timing violation is 1+ ε′ ≤ 1+ ε. Therefore, Bi0 ≤ (1+
ε′) ·B? and the total power consumption is bounded by (1 +
ε/4)Bi0 ≤ (1+ε/4)2B? ≤ (1+ε)B?. The binary search exam-
ines O(log log Û

ε ) budgets, and by Lemma 5 the total running
time is O

(
u2

maxK̂ · Tgrad · ρ · Û · ε−3 log |P| log log Û
ε

)
.

Similarly, we could perform a search on T to minimize the
feasible cycle time, or two searches for minimizing the cycle
time and then also the power.

If ρÛ ≥ |E| holds, we can use a different running time
analysis by [11] and obtain the following alternative result for
Lemma 5.

Lemma 7. Assuming A1–A6 and given a power budget
budgetpower ∈ R ≥ 0, 0 < ε < 1, we can decide
whether λ∗ ≤ (1 + ε) or λ∗ > 1 using Algorithm 2 in time
O
(
u2

maxK̂ · Tgrad · |E|ε−3 log |P|
)

.
Combined with binary search, this yields a total running

time of

O

(
u2

maxK̂ · Tgrad · |E|ε−3 log |P| log
log Û

ε

)
.

The cardinality |P| appears only logarithmically, thus as a
rough estimate we can derive a linear bound

log |P| ≤ log 2|V | = O(|V |).

Moreover, under the assumptions of Lemma 5, the running
time is provably polynomial. Filtering out the technology-
dependent constants umax, K̂, Û and ρ the running time in
Theorem 6 is essentially

O
(
Tgrad
ε3
|V | log

1

ε

)
.

Our algorithm gives some justification to similar heuristic
modifications of updating Lagrange multipliers in [42], [24].
It was also shown in [38] that the basic multiplicative weights
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algorithm described in Arora et al. [1] can be applied here.
In contrast to our algorithm, it also decreases weights and in
that sense is more similar to the aforementioned heuristics.
However, it comes with an inferior running time bound.

G. Characteristics of the RC-Delay Model

In this section we show that for the RC-delay model, A5
holds and the problem width ρ is a small technology-dependent
constant. Let Γ+(g) ⊂ G denote the set of gates that are direct
successors of g. In the RC-delay model, the delay of an edge
e ∈ E leaving a gate g ∈ G is of the form

κe +
αe
xg

+
∑

g′∈Γ+(g)

βexg′ +
∑

g′∈Γ+(g)

γe
xg
xg′ , (15)

where κe, αe, βe, and γe > 0 are constants [8], [6]. After
variable transformation into a convex program as described in
Section III, we get

delaye(x) = κe+αee
−xg +

∑
g′∈Γ+(g)

βee
xg′+

∑
g′∈Γ+(g)

γee
xg−x′g .

(16)

With these delay formulas we obtain the Lipschitz-
continuity.

Lemma 8. In the RC-delay model, where delays are given as
in (16), the gradient ∇

∑
e∈E delaye(x) is Lipschitz continu-

ous on the set X with Lipschitz constant KD bounded by

KD ≤ max
x∈X

max
g∈G

( ∑
e∈Eg

delaye(x)

)
,

where Eg ⊆ E is the set of edges incident to gate g, i.e. edges
whose delay is affected by the size of g.

Proof.
∑
e∈E delaye(x) is a sum of exponential functions of

the form∑
g∈G

ζge
xg +

∑
g∈G

χge
−xg +

∑
g,g′∈G

ψg,g′e
xg−xg′ ,

with ζi, χi, ψij ∈ R≥0 for all 1 ≤ i, j ≤ n. Thus, each partial
derivative ∂

∑
e∈E delaye(x)

∂xg
is the sum of exponential functions

of ±xg (g ∈ G).
By the definition of the Lipschitz constant we have:

lip(λ) = max
x,y∈X

||∇L(λ, x)−∇L(λ, y)||∞
||x− y||∞

,

≤ max
x,y∈X

max
g∈G

∂L
∂xg

(λ, x)− ∂L
∂yg

(λ, y)

xg − yg

≤ max
z∈X

max
g∈G

∂2L

∂z2
g

(λ, z)

= max
z∈X

max
g∈G

∑
e∈Eg

delaye(z),

where the second inequality follows from the mean value
theorem, and for the last equality we use the fact that L(λ, z)
is the sum of exponential functions.

We can conclude that on a reasonably buffered netlist, where
|Eg| and the maximum delay of any edge in the timing graph
are bounded, KD can also be considered a constant.

Theorem 9. In the RC-delay model, where delays are given
as in (16), and when there are constants κ, τ such that
maxe∈E,x∈X delaye(x) < κ and maxg∈G |Eg| ≤ τ , then

KD ≤ κ · τ.

Furthermore, we show the following bound on the problem
width.

Lemma 10. In the RC-delay model the problem width ρ can
be bounded by ρ ≤ max{Û , u2

max}.

Proof. Let x ∈ X be any gate sizing solution, and x∗ a
solution attaining λ∗. By A3 we have

power(x) ≤ Û · power(x∗) ≤ Ûλ∗.

The RC-delay (15) can be bounded as follows:

delaye(x) = κe +
αe
xg

+
∑

g′∈Γ+(g)

βexg′ +
∑

g′∈Γ+(g)

γe
xg
xg′

= κe +
αe
xg

ug
ug

+
∑

g′∈Γ+(g)

βexg′
lg′

lg′

+
∑

g′∈Γ+(g)

γe
xg
xg′

lg′

lg′

ug
ug

≤ κe + umax
αe
ug

+ umax

∑
g′∈Γ+(g)

βelg′

+ u2
max

∑
g′∈Γ+(g)

γe
ug
lg′

≤ u2
max · delaye(x∗).

(17)

Thus, for any path P ∈P we have delayP (x)/T ≤ u2
maxλ

∗.

H. Modeling Timing Constraints with Edge Resources
The timing constraints in (1) can also be modeled by explicit

edge resources as proposed in the context of timing-driven
global routing by Held et al. [15].

Combining a binary search for the power budget with the
resource sharing algorithm from [26] we obtain the following
runtime bound:

Theorem 11. Assuming A1–A6 the continuous relaxation of
the gate sizing problem can be approximated up to accuracy
(1 + ε) for ε > 0 in time

O

(
u2

maxK̂ ·
Tgrad
ε
|E| log |E|ε−2 log

log Û

ε

)
.

For further details we refer to [38]. However, this model re-
quires additional arrival time customers for each v ∈ V , which
would make the practical implementation more involved.

Furthermore, our model with path resources rather targets
the feasibility for all timing paths simultaneously. Thus, we
believe that the model we apply here is more suitable in
practice for maximizing the TPNS (4) and TTNS [34], when
no feasible solution exists.

I. Model Extensions
We now discuss extensions of the resource sharing model. It

is easy to see that the oracle described in the proof of Theorem
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3 for the gate customer can still be utilized after adding the
following resources.

1) Load capacitance limits: Under certain assumptions
load capacitance limits can be modeled as resources and
integrated into the framework. We introduce a resource for
each net source pin p on the chip to model constraints on load
capacitances:

loadcapp(x) ≤ loadlimp(x), x ∈ X, (18)

where loadcapp(x) is the load capacitance seen at pin p and
loadlimp(x) is the load capacitance limit allowed at p with
sizes x. If loadcapp(x) is convex and loadlimp(x) is concave,
we can define a resource for p and a usage function as follows:
Let Cp := max{loadlimp(x) : x ∈ X} > 0, and let the
resource usage function be

usgG,p(x) :=
loadcapp(x) + Cp − loadlimp(x)

Cp
.

This is a convex function in x as required in the resource
sharing problem (cf. Section III-A) and (18) is fulfilled if
and only if usgG,p(x) ≤ 1. This model works in particular
if loadcapp(x) and loadlimp(x) are linear functions.

2) Slews & slew limits: A more accurate delay model
with slew propagation was already presented in [3]. Slews
and delays are still posynomials and convexifiable. Thus, such
more accurate delay models can also be integrated into our
resource sharing model. They allow us also to respect slew
limits at each gate input pin. We add a resource for each sink
pin of each net and define the resource usage as the slew
arriving at the corresponding pin divided by its slew limit.
Assuming a constant slew limit, which is prevalent in practice,
it is easy to see that as in Section III-I1 the resulting resource
usage is a convex function in x (cf. Section II).

With these model extensions, electrical violations are not
treated as hard constraints, but are punished by increasing
resource weights. In a physical design flow however, they are
often treated as hard constraints, in particular towards the end
of the design flow. This can be accomplished by adding them
as constraints in the oracle function.

3) Placement Density Constraints: Placement-unaware
gate sizing can overfill certain regions of a chip due to an
increase in the area. Resolving overlaps might be hard and
causes disruptions in such regions. Therefore, it is beneficial
if a global gate sizing algorithm is aware of placement density.
In previous works on gate sizing, placement density constraints
are usually taken into account implicitly by incorporating area
consumption or a violation of the maximum allowed area
consumption into the objective function. See for example Cong
et al. [7] and Reimann et al. [34]. Density constraints can
be easily integrated into the resource sharing framework. We
subdivide the chip into regions and add a resource for each
placement region R. The resource usage of the gate customer
for x ∈ X then is

usgG,R :=
1

area(R) · target
·
∑
g∈G

areaR(xg), (19)

where area(R) is the free area in region R, 0 < target < 1
is the density target of region R and areaR(xg) is the area of

g

Vpred(g) Vsibl(g) Vsucc(g)

Figure 2. A gate g and the timing subgraph in its region. The pins p ∈
Nb(g) = Vpred(g) ∪ Vsibl(g) ∪ Vsucc(g) are considered in slack queries.

gate g in region R with size xg .

IV. DISCRETE CELL SELECTION

For the discrete cell selection problem no efficient al-
gorithms are known and are unlikely to exist, because the
choices of voltage thresholds are inherently discrete and delay
functions in practice are often non-convex. We propose a new
cell selection heuristic algorithm based on Algorithm 2, but
with a heuristic sizing oracle.

Under the assumption that the number of gates per logic
level is bounded by a constant, there is also an FPTAS for
the oracle of the gate customer [38], similar to the FPTAS for
maximum delay minimization by [23]. However, in practice
the number of gates per logic level increases with the instance
size, limiting its usefulness.

A. Discrete Cell Selection Oracle

We now describe a heuristic cell selection oracle that aims
to minimize the weighted resource usage (11). Our algorithm
traverses the gates g ∈ G one by one and selects a cell type
xg ∈ Xg for g while keeping gates in G − g fixed.

To speed-up computations we restrict delay updates to a
small region around g, which is defined by the timing sub-
graph induced by the gates that are connected with g by a net,
i.e. we recompute delays, slews, arrival times, and required
arrival times for all timing graph edges inside and between
these gates, keeping the boundary constant. Thereby, slew
effects in the upstream cone of the region are ignored during
the cell refinement.

Figure 2 shows a gate g ∈ G and its region. Vsibl(g) denotes
the set of sink pins in input nets of g excluding the pins of g
(siblings), Vsucc(g) denotes the set of sink pins in output nets
of g (successors), and Vpred(g) denotes the set of source pins
in input nets of g (predecessors). We say that

Nb(g) := Vpred(g) ∪ Vsibl(g) ∪ Vsucc(g)

is the neighborhood of g.
We found experimentally that the algorithm gives good

solution in fewer iterations with two heuristic modifications.
The edge delay changes induced by changing the cell-type

of a gate can be estimated by measuring slack changes in
a neighborhood of g. We have observed experimentally that
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Algorithm 3 Local search oracle with pin weights
Input: An initial cell selection x ∈ X , pin weights (ωv)v∈V ,

a power weight ωpower.
Output: A new cell selection x′g ∈ X .

1: x′ ← x

2: for g ∈ G do
3: Update slacks for all v ∈ Nb(g) with global slew and

delay propagation.
4: Choose x′g s.t. (21) is minimized with slew and delay

propagation restricted to the region around g.
5: end for

best results are obtained when slacks are optimized directly
and edge delay changes are only captured implicitly. As this
approach emphasizes slack changes the timing metrics are
optimized more efficiently. To this end, we define for all v ∈ V
the pin weight

ωv := ωP[Vin,v]
·ωP[v,Vout]

= max

 ∑
e∈δ+(v)

ωe,
∑

e∈δ−(v)

ωe

 ,

(20)

where ωP[Vin,v]
·ωP[v,Vout]

is defined in the proof of Lemma 2.
Recall that the two sums in the maximum differ only for
vertices in Vin ∪Vout. We use the following heuristic objective
when choosing a cell type for g:

ωpower
power(x′g)

B
−

∑
v∈Nb(g)

ωv
slackx′(v)

T
. (21)

In addition, we do not select cell types that increase load or
slew violations compared to the current solution. Note that
this does not necessarily capture all delay changes, but has
the advantage that it optimizes timing metrics more directly.

Second, we scale γ by the iteration and choose

ωE ← EDGEWEIGHTS(γ/i, yE)

in line 5 of Algorithm 2. By scaling γ, the total weights stay
more stable from iteration to iteration. Algorithm 3 shows the
overall discrete oracle. While most local search algorithms for
cell selection process the gates either in topological or reverse
topological order, we found that the quality hardly depends on
the order and an arbitrary order gives similar resutls. We will
use this observation in our parallelization approach in the next
section.

B. Parallelization

For gate sizing by Lagrangian relaxation an efficient multi-
threaded approach was described in [40], parallelizing the
Lagrangian subproblem as well as static timing analysis and
multiplier update. To avoid conflicts, they propose to not 1)
size gates with common input nets and 2) gates on a common
path simultaneously.

We did not parallelize the update of the resource weights
yet, because it already is very fast. For static timing analysis

we use the parallelization build into the timing engine (IBM
EinsTimer). Finally, the most time-consuming step is the
cell selection oracle. Here, we employ an approach provided
by the IBM design environment [4]. It partitions the netlist
into logical regions and allows lock-free optimization accross
the regions. Input gates of the regions must not be sized.
Thereby, two gates with common input net cannot be sized
simultaneously, but we might size gates on a common path
if they are assigned to different regions. As the input gates
of each region are temporarily fixed, we see only marginal
degradations after resolving the regions. Multiple partitions
ensure that each gate is sizable in some partition.

C. Further implementation details

We omit the outer binary search over the power budget B
but instead estimate an initial budget and adjust it incremen-
tally during the algorithm (see Sections VI-A and VI-B).

As we look for a discrete solution we do not keep track of
a convex combination of sizes but only keep the best solution
that was computed, which is usually the result of the last
iteration.

Industrial designs can have multiple clock domains and
propagate rise and fall transitions. We compute a weight at
each pin for each arrival time that is propagated by the timing
engine. In the weight computation T is chosen as the cycle
time of the given clock domain.

V. COMPARISON TO THE PROJECTED SUBGRADIENT
METHOD

We also implemented the projected subgradient method (see
[3] for details) to allow comparison with our new resource
sharing algorithm. It is built around the same oracle (Algo-
rithm 3) which enables us to directly compare the different
weight update schemes. In this particular comparison, the
oracle locally minimizes the original objective from (11)
instead of (21) for both the subgradient method and the
resource sharing algorithm as required by theory.

To get a fair comparison between the two methods, we
omitted heuristic modifications of the subgradient method ex-
cept for those necessary to implement a discrete cell selection
oracle.

For the subgradient method, it is difficult to determine initial
multipliers and step lengths that work well for a broad range of
instances, despite many improvements [41], [44]. We simply
initialize each multiplier (λe)e∈E(G) with a small percentage
of the absolute negative slack of e. The Lagrange multipliers
are updated by the local edge slack as in [3] and projected
to the non-negative flow space with the heuristic from [41].
We also conducted experiments in which we projected the
multipliers exactly solving the arising quadratic minimum cost
flow problems. However, we observed that the results and
convergence behavior did not improve significantly [38].

We also implemented a variant of the subrgradient method
suggested by Jiang et al. [19], which solves the feasibility
problem (8) and maintains a power multiplier λP . This has
the advantage that on infeasible designs, where edge delay
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Figure 3. Convergence of resource sharing algorithm vs. subgradient method.

multipliers grow to infinity, the objective is not dominated by
the delay multipliers.

We tested several step size rules and found best results when
using the step size 1/

√
i in the i-th subgradient iteration, which

guarantees convergence.

On the left side of Figure 3, we compare our new resource
sharing algorithm (squares) with the regular projected subgra-
dient method [3] (diamonds) and with the power-constrained
subgradient method [19] (circles) on an industrial instance
with infeasible timing constraints. On the right side, we
compare the same methods on the same instance but with a
relaxed feasible cycle time. The figures show the development
of the worst slack WS, the total negative slack TNS and static
power consumption after each of 25 iterations.

On the infeasible instance, both subgradient methods show
bouncing WS and TNS. For the regular variant, the power
consumption increases as multipliers go to infinity. The power-
constrained subgradient method lets the power consumption
decrease from iteration 5 on, as the power multiplier grows,
too. The resource sharing algorithm shows a stable conver-
gence in all metrics, yielding significantly better WS and TNS.
On the feasible instance, all methods converge to feasible
solutions. Again, the resource sharing algorithm exhibits a
much faster convergence and a better power consumption after
25 iterations.

VI. EXPERIMENTAL RESULTS

We evaluated our discrete cell selection algorithm on in-
dustrial 22 nm instances from IBM, which were also used in
[33], [34], and on the ISPD 2013 cell selection benchmarks
[28]. The signoff timing engine IBM EinsTimer is used for
all timing and power calculations using the respective delay
calculation methods from [34] and [28].

A. Results on industrial instances

The experiments on industrial 22nm instances were con-
ducted on a heterogeneous cluster with Intel Xeon CPUs with
clock frequencies between 2.6 and 3.5 GHz. For each instance,
all experiments were carried out on the same server. We ran
our algorithm with six threads. We compared our approach
(RS) with the Lagrangian relaxation (LR) algorithm by [34],
which runs sequentially and which was integrated into the IBM
design environment by the authors of [34].

We ran physical design with the same instances as [34].
As [34], we used the result of the current IBM design flow
just before detailed routing as input to our cell selection
experiments. Thus, the input to cell selection differs slightly
to the input in [34], which, in turn, differs to the one in [33],
all caused by minor changes of the flow. However, within our
new experiments the input to our RS algorithm and to the LR
algorithm coincide. As a fixed power budget B we chose 0.8
times the initial power consumption achieved by the design
flow.

Table I shows the results. The instance names and their
sizes are given in the first two columns. For each instance,
we computed upper bounds ρt and ρp for the maximum
usage of a timing or power resource by any feasible solution,
respectively. To this end, we compute a minimum power
solution l̄ satisfying all capacity constraints but ignoring delay
constraints. For ρt, we then assert at each sink pin of a net
the highest possible pin capacity to get upper bounds for the
delays. Then ρt is the quotient of the maximum path delay
and T . Furthermore, ρp = power(ū)/power(l̄), where ū is a
solution using lowest Vt levels and largest sizes everywhere.
It follows that ρ ≤ max{ρt, ρp}.

For every instance three solutions are analyzed. The solution
that is given by the industrial flow is named Industrial, the
solution computed by the Lagrangian relaxation algorithm
of [34] is named LR and the solution computed by our
resource sharing algorithm is called RS. For each of those runs
we measured the worst slack (WS), the total negative slack
(TNS) and the true total negative slack (TTNS) which were
introduced in Section II. The electrical violations are shown
in terms of the number of slew violations (vslew) and load
violations (vload). For the power consumption we distinguish
between the static power usage Pstatic and the total power usage
Ptotal = Pstatic + Pdynamic. The testbed contains a high variety
in terms of the leakage/dynamic power ratio. ∆Ptotal denotes
the change in total power. Running times twall are given in the
last column.

The timing metrics are measured just before detailed rout-
ing. All numbers refer to results after subsequent placement



11

INSTANCE |G| ρt ρp Flow WS TNS TTNS vslew vload Pstatic Ptotal ∆Ptotal twall
[ps] [ns] [ns] [µW ] [µW ] [h:m:s]

ibm2016uP 01 99k 16 10 Industrial -69.5 -101.4 -602.6 11 0 81.7 95.1
LR [34] -69.6 -94.7 -583.4 5 1 65.7 79.0 -16.9% 11:25:03

RS -69.4 -103.2 -582.1 3 0 65.7 79.0 -16.9% 57:16
ibm2016uP 02 10k 11 14 Industrial -156.9 -1.9 -10.0 0 5 1.2 2.5

LR [34] -156.9 -1.9 -10.0 0 3 1.2 2.4 -2.1% 1:47:53
RS -156.7 -1.9 -10.2 0 0 1.2 2.4 -1.4% 24:06

ibm2016uP 03 9k 8 7 Industrial 7.0 -0.0 -0.0 0 2 2.7 52.5
LR [34] 7.0 -0.0 -0.0 0 2 2.7 52.4 -0.1% 1:19:29

RS 7.0 -0.0 -0.0 0 2 2.7 52.7 +0.5% 22:13
ibm2016uP 04 7k 14 9 Industrial -11.2 -0.7 -0.7 0 0 1.6 2.9

LR [34] -11.2 -0.7 -0.7 0 0 1.6 2.9 +0.7% 58:32
RS -11.1 -0.7 -0.7 0 0 1.6 2.9 -0.5% 15:22

ibm2016uP 05 16k 9 4 Industrial -76.6 -36.6 -64.0 91 2 20.3 67.4
LR [34] -76.5 -37.1 -64.5 40 2 18.0 64.8 -3.8% 53:13

RS -76.3 -36.6 -64.0 42 1 16.7 63.2 -6.3% 20:19
ibm2016uP 06 77k 13 6 Industrial -108.9 -15.9 -25.6 20 381 35.7 147.6

LR [34] -108.9 -14.6 -24.5 14 381 33.5 145.3 -1.5% 3:13:37
RS -108.9 -13.7 -21.0 10 381 33.9 145.8 -1.3% 38:13

ibm2016uP 07 72k 14 9 Industrial -33.9 -38.6 -231.6 9 4 60.8 73.2
LR [34] -33.9 -38.7 -235.0 2 2 53.2 65.6 -10.4% 7:55:57

RS -33.3 -38.2 -221.3 3 5 53.2 65.6 -10.3% 47:45
ibm2016uP 08 18k 11 4 Industrial -72.6 -35.1 -176.4 64 4 16.8 85.6

LR [34] -72.6 -35.0 -176.3 40 4 16.7 85.4 -0.3% 2:20:00
RS -72.6 -35.4 -175.3 40 2 12.0 79.7 -6.9% 17:19

ibm2016uP 09 18k 11 6 Industrial -23.2 -8.8 -36.2 3 1 14.5 47.6
LR [34] -22.8 -8.7 -37.0 1 0 12.3 45.2 -5.0% 2:06:49

RS -22.6 -9.3 -36.4 1 1 12.4 45.4 -4.7% 17:47
ibm2016uP 10 126k 14 6 Industrial -43.8 -76.0 -342.6 67 7 91.6 397.1

LR [34] -41.0 -84.2 -401.8 48 7 74.7 371.5 -6.5% 9:05:31
RS -38.9 -78.8 -346.9 31 2 65.1 365.3 -8.0% 1:22:58

ibm2016uP 11 25k 16 5 Industrial -140.7 -167.2 -886.7 19 27 39.7 61.6
LR [34] -140.4 -164.1 -881.8 20 28 36.7 58.7 -4.7% 2:27:04

RS -140.4 -164.2 -842.2 20 21 34.5 56.5 -8.4% 19:30
ibm2016uP 12 18k 16 4 Industrial -417.8 -342.0 -696.1 12 3 5.1 25.4

LR [34] -417.8 -333.7 -680.6 12 3 4.8 25.0 -1.8% 2:46:08
RS -417.7 -333.6 -675.6 12 0 5.3 25.5 +0.2% 18:36

ibm2016uP 13 20k 11 4 Industrial -47.6 -20.8 -103.4 1 2 19.6 80.2
LR [34] -47.4 -20.3 -103.0 0 2 18.2 78.6 -2.0% 1:21:09

RS -47.3 -20.1 -101.0 0 2 15.4 75.8 -5.5% 21:35
ibm2016uP 14 13k 7 2 Industrial -54.8 -5.1 -9.2 1 4 8.2 17.9

LR [34] -54.8 -5.1 -9.2 1 4 8.2 17.9 -0.1% 39:34
RS -54.3 -5.1 -9.2 1 4 8.2 17.9 +0.0% 13:04

Table I
RESULTS ON IBM 22 NM SERVER INSTANCES. THE RS FLOW USES 6 THREADS.

legalization. The power reductions and running times that we
measured for LR are comparable to those in [33] and [34].

On these instances the primary purpose of cell selection
is to reduce the power consumption while maintaining the
timing metrics. Instead of optimizing the power budget B via
binary search, we initialize B as 80% of the initial power
consumption. Then, after each iteration of Algorithm 2, we
increment (decrement) B by the factor 1.15 (1.15−1) if the
TTNS decreased (increased) by more than 5% compared to
the previous iteration.

In every iteration of the algorithm we invoke the local
search oracle exactly once. In global routing one usually
chooses γ depending on the amount of iterations. [26] obtain

good solutions with γ = 125
#iterations . As we only perform four

iterations we use a large value of γ = 80.

Throughout the testbed our algorithm obtains a comparable
or a better total power reduction. On instance ibm2016uP 08
we are able to reduce the power by 6.9% while the reference
algorithm only reduces the total power by 0.3%. The running
time is greatly reduced. On the largest instance ibm2016uP 10
with 126k gates the resource sharing approach takes about 83
minutes. The reference algorithm does not only take more than
6 times the running time but also greatly worsens the TNS and
TTNS while it obtains a worse power reduction.
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Benchmark |G| ρt ρp Pstatic twall
LR∞[9] LR[9] RS Change LR[9] RS Change

[W ] [W ] [W ] LR/RS [m] [m] LR/RS

usb phy slow 510 71 1658 0.00107 0.00107 0.00109 +1.9% 0.49 1.12 +128.6%
usb phy fast 510 106 1658 0.00153 0.00155 0.00164 +5.8% 0.42 1.13 +169.0%
pci bridge32 slow 28k 87 1546 0.05695 0.05696 0.05911 +3.8% 10.53 9.33 -11.4%
pci bridge32 fast 28k 116 1546 0.08504 0.08544 0.08993 +5.3% 22.62 13.90 -38.5%
fft slow 31k 311 1751 0.08655 0.08660 0.08928 +3.1% 25.71 15.85 -38.4%
fft fast 31k 399 1751 0.19391 0.19431 0.20851 +7.3% 40.43 30.22 -25.3%
cordic slow 42k 221 1632 0.26567 0.27051 0.26917 -0.5% 69.04 31.73 -47.2%
cordic fast 42k 252 1632 0.98018 1.00099 0.90893 -9.2% 117.08 35.70 -69.5%
des perf slow 104k 65 1495 0.32729 0.33042 0.33535 +1.5% 132.27 33.88 -74.4%
des perf fast 104k 74 1495 0.64450 0.64882 0.61616 -5.0% 347.87 51.90 -85.1%
edit dist slow 121k 193 1124 0.41604 0.42549 0.45703 +7.4% 129.90 38.63 -70.3%
edit dist fast 121k 231 1124 0.53547 0.53979 0.57169 +5.9% 352.96 67.45 -80.9%
matrix mult slow 153k 77 1533 0.44291 0.44427 0.44911 +1.1% 226.13 87.95 -61.1%
matrix mult fast 153k 98 1533 1.54157 1.61093 1.42813 -11.3% 395.96 101.07 -74.5%
netcard slow 884k 38 547 5.15483 5.15524 5.20912 +1.0% 483.55 89.75 -81.4%
netcard fast 884k 45 547 5.18159 5.20015 5.25621 +1.1% 400.89 90.52 -77.4%

Table II
RESULTS ON ISPD 2013 CONTEST BENCHMARKS. THE RS FLOW USES 44 THREADS.

B. Results on ISPD 2013 instances

In contrast to the industrial instances, the initial solutions of
the ISPD 2013 instances are not pre-optimized. Most gates are
set to their largest possible size and lowest possible voltage
threshold leading to huge timing violations and an extensive
power consumption.

As we have no reasonable estimate for the power budget we
use a static usage of 1.05 for the power resource in each of the
five resource sharing iterations. This leads to the power being
optimized as soon as the timing is almost closed. Again, we
use γ = 80. As the initial solution is meaningless, we perform
three oracle calls with the same weights during the first two
iterations, two in the next two iterations and a single one in the
final iteration. Vt changes are only allowed starting from the
third iteration, as otherwise high timing costs lead to many
low Vt cells which would need to be deaccelerated in later
iterations. After our Algorithm terminated, there may still be
small timing violations. Thus, we employ a dedicated Vt post-
optimization to achieve timing closure. It is a discrete variant
of the algorithm for the linear time-cost tradeoff problem
described by Phillips and Dessouky [30], which iteratively
speeds up cells along minimum cuts in G weighted by the
ratio of power increase/delay reduction. Details can be found
in [12], Chapter 6.

If more than 0.1% of the cells are not on the highest Vt
level we apply a post-processing by running a single iteration
of Algorithm 2 and accept the new solution if the power
improved. Final capacitance, slew, and delay violations are
fixed by the simple local search from [13]. The full flow for
the ISPD instances is sketched in Algorithm 4.

For the ISPD instances we could use a bigger server with
two Intel Xeon E5-2699 v4 CPUs having 44 cores in total.
We ran our algorithm with 44 threads.

Table II shows our results. We compare our solutions to the
best known results which were published by Flach et al. [9].

Algorithm 4 Flow for ISPD 2013 benchmarks
1: Assign all gates to their smallest size and highest Vt.
2: Run Algorithm 2 with 5 iterations.
3: Fix-up by lowering Vt along minimum cuts [30], [12].
4: if more than 0.1% low Vt gates then
5: Post-processing: 1 iteration of Algorithm 2.
6: end if
7: Fix remaining violations by local search [13].

They made two experiments. In a first experiment, they run
their cell selection without a running time limit (LR∞), while
in the second experiment a reasonable stopping criterion is
added (LR). The best known power consumptions are obtained
by invoking their algorithm without any running time limit.

As both our algorithm and the reference algorithm find
violation free solutions with feasible timing on all instances,
we only measure the power consumption and the running
time. Note that as we do not have access to PrimeTime, the
official timing engine used in the benchmark. Instead, we used
EinsTimer by IBM, setting precisely the same delay modes as
documented with the benchmarks.

Again we specify upper bounds ρt and ρp for the maximum
usage of a timing or power resource. The column labeled
LR∞ reports the previously best known power consumptions.
The power consumption and running times of the reference
implementation are given in the columns labeled LR. In com-
parison our power consumption and running times are given
in columns labeled RS, followed by the percentual change to
LR.

In terms of solution quality the results are mixed but
competitive. On six instances the difference is no more that
2%. On some instances like fft fast and edit dist slow we use
up to 7.4% more power than the reference algorithm. On other
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instances, e.g. des perf fast, cordic fast and matrix mult fast,
we obtain significant improvements by up to 11.3%.

We remark that the problem width ρ, especially in terms
of the maximum usage of the power resource, seems to be
much larger for the ISPD instances compared to the industrial
instances. This shows that the instances might be harder to
solve.

Taking advantage of parallelization (Section IV-B) our run-
ning times are highly competitive, on the largest instance
netcard fast with 884k gates we need 91 minutes compared to
the 401 minutes of the reference algorithm. On other instances
with at least 100k gates the speedup is similar. Note that we
perform all timing computations exclusively with the signoff
timer EinsTimer. The reference algorithm exploits the simple
timing rules on the ISPD instances and implements a fast
timing engine for the Lagrangian relaxation, while a signoff
timer is only invoked to identify and fix remaining timing
violations [9].

C. Parallelization results

We demonstrate the parallelization efficiency of our algo-
rithm in Table III on two representative instances: a medium
size and the largest ISPD benchmark.

We report running times for 3 steps. Running times for the
sequential weight computation are reported in rows labeled
“weights”, and for the first iteration of Algorithm 2, reflecting
a sequential weight computation and a gate customer oracle
call, in rows labeled “1st iteration”. In the first iteration the
algorithm typically alters most cells and exhibits the highest
parallelization speed-up over all iterations,. Finally, we show
the total running time of Algorithm 4. We compare single-
threaded running times with 4, 16, and 44 threads.

One can see that the weight computation takes less than 1%
of the running time of the first iteration. Note that the CPUs
have a clock speed of 2.2 GHz for 44 threads in contrast to
3.6 GHz for a single thread. Thus, the maximum theoretical
speedup factor with 44 threads is roughly 26.9.

For the first iteration we are close to this theoretical bound
with a speedup of 24.4 on des perf fast and 24.3 on net-
card fast. In later iterations the cell selection oracle performs
less cell changes, thereby increasing the sequential overhead
and reducing the speedup. Combined with the sequential local
search to fix timing violations, the total speedup reduces
to 4.9 and 16.2 respectively. In later iterations the weight
computation takes up to 5% of the running time of an iteration.

A multi-threaded approach for cell selection based on
Lagrangian relaxation was recently described in [40]. Their
algorithm traverses gates in topological order and the maxi-
mum reported speedup with 16 threads is 8.13 on ISPD 2012
instances.

It is difficult to compare the parallelization efficiency. In
[40] a custom static timer is used. On netcard fast from the
ISPD 2012 benchmark [40] is already faster using a single
thread (42 minutes) than our algorithm using 44 threads (131
minutes) but an industrial sign-off timing engine.

VII. CONCLUSION

We showed how the convex and continuous gate sizing prob-
lem can be modeled as a resource sharing problem yielding a
fast polynomial running time. Note that for the projected sub-
gradient method, when applied to gate sizing, convergence but
no polynomial running time was proven yet. Our comparison
is also indicating a better practical convergence. We provide
a theoretical foundation for combining Lagrangian relaxation
with multiplicative weight update methods, which have been
applied similarly but heuristically before.

For the discrete cell selection problem, the resource weights
lead to a highly competitive heuristic algorithm. On industrial
instances, we can improve the power consumption and on
ISPD 2013 benchmarks we are competitive to the so far
most successful algorithms [34], [9]. Furthermore, our efficient
parallelization leads to significantly shorter running times
even when using an industrial sign-off timer for all timing
calculations.
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