
An Improved Approximation Algorithm for the Uniform
Cost-Distance Steiner Tree Problem

Ardalan Khazraei1 and Stephan Held2

1 Hasso-Plattner-Institute, University of Potsdam, Germany
2 Research Institute for Discrete Mathematics, University of Bonn, Germany

Ardalan.Khazraei@hpi.de held@dm.uni-bonn.de

Abstract. The cost-distance Steiner tree problem asks for a Steiner tree in a graph
that minimizes the total cost plus a weighted sum of path delays from the root to the
sinks. We present an improved approximation for the uniform cost-distance Steiner tree
problem, where the delay of a path corresponds to the sum of edge costs along that
path.
Previous approaches deploy a bicriteria approximation algorithm for the length-bounded
variant that does not take the actual delay weights into account. Our algorithm modifies
a similar algorithm for the single-sink buy-at-bulk problem by Guha et al. [7], allowing
a better approximation factor for our problem. In contrast to the bicriteria algorithms
it considers delay weights explicitly. Thereby, we achieve an approximation factor of
(1 +β), where β is the approximation factor for the Steiner tree problem. This improves
the previously best known approximation factor for the uniform cost-distance Steiner
tree problem from 2.87 to 2.39.
This algorithm can be extended to the problem where the ratio of edge costs to edge
delays throughout the graph is bounded from above and below. In particular, this shows
that a previous inapproximability result [15] requires large variations between edge
delays and costs.
Finally, we present an important application of our new algorithm in chip design. The
cost-distance Steiner tree problem occurs as a Lagrangean subproblem when optimizing
millions of Steiner trees with mutually depending path length bounds. We show how to
quickly approximate a continuous relaxation of this problem with our new algorithm.

1 Introduction

Steiner trees and arborescences that balance the objectives of minimum total length
and shortest path lengths in the tree play an important role in the interconnect
optimization of computer networks or chips [4, 12, 14, 9, 10, 1, 3]. In fact, the decreasing
feature sizes have turned interconnect optimization into a key problem in the physical
design of computer chips [1, 3].

In this work, we consider a special case of the cost-distance Steiner tree problem
that was introduced in [14]. In its general form, we are given a graph G with edge
costs c : E(G)→ R≥0 and edge delays d : E(G)→ R≥0, a root r ∈ V (G), a terminal
set T ⊆ V (G)\{r}, and delay weights w : T → R≥0. For a tree A rooted at r spanning
the terminals T ∪ {r} ⊆ V (G) we consider the objective function∑

e∈E(A)

c(e) +
∑
t∈T

w(t) · d(E(A[r,t])), (1)

where A[r,t] is the unique r-t-path in A and d(E(A[r,t])) =
∑

e∈E(A[r,t])
d(e). We shall

refer to the first term in the objective function as the connection cost and second term
as the delay cost.

In [14] a O(log |T |)-factor approximation algorithm was presented, and in [15] it
was shown that the problem cannot be approximated better than Ω(log log |T |) unless

2 A. Khazraei and S. Held

NP ⊆ DTIME(|T |O(log log log |T |)). Here, we consider the uniform cost-distance Steiner
tree problem that arises if there is a fixed relation θc = d for some constant θ ∈ R>0

for which our algorithm provides an improved approximation from a previous constant
factor. We may assume without loss of generality that the constant θ is equal 1 as it
can otherwise be factored into the delay weights.

We later extend this to the bounded-ratio cost-distance Steiner tree problem that
arises if there are constants Θ ≥ θ > 0 such that θc(e) ≤ d(e) ≤ Θc(e) for all e ∈ E(G)
and provide an approximation factor based on the parameter Θ/θ. This in particular
shows that the inapproximability result in [15] relies on allowing this parameter to
increase indefinitely with the input size. The conditions imply that c(e) = 0 if and
only if d(e) = 0. We assume that edges with c(e) = 0 = d(e) are contracted in a
preprocessing step, i.e. c, d > 0.

As noted in [14], a constant-factor approximation for the uniform case can be
achieved with the bicriteria algorithm balancing minimum spanning trees and shortest
path trees [12], leading to a 3.57-factor approximation. Using a variant that con-
structs shallow-light Steiner arborescences instead of (terminal) spanning trees [9], the
approximation factor improves to 2.87 as shown implicitly in [8] and explicitly in [17].

Many approaches consider a single Steiner tree problem with bounded path lengths
[9, 10, 1, 3], and modify the bicriteria approximation algorithm for the shallow-light
spanning tree problem by [4], which was later refined by [12]. Note that relaxing
the bounds on the path lengths via Lagrangean relaxation results in the uniform
cost-distance Steiner arborescence problem.

A related problem is the single-sink buy-at-bulk problem where a set of demands
need to be routed from a set of sources to a single sink. K different types of pipes are
available for installation on any of the edges. Each pipe type has a different cost and
capacity. This problem has been extensively studied in the literature with a series of
improving constant approximation factors of 292 [7], 216 [18], 153.6 [11], and 40.82 [6].
For the splittable case, the best factor is 20.41 [6]. In [18] the single-sink buy-at-bulk
problem was related to the generalized deep discount problem, where the pipe capacities
are replaced by ‘incremental’ costs per unit of flow. With only a single pipe type it
reduces to the uniform cost-distance Steiner tree problem. The approximation factor
of the generalized deep discount problem is within a factor of two of the approximation
factor for the single-sink buy-at-bulk problem [18].

1.1 Our Contribution

Here, we propose a new algorithm that achieves an approximation factor of (1 + β),
where β is the approximation factor for the Steiner tree problem. Using β = ln(4)+ε [2],
this improves the best known approximation factor from 2.87 to 2.39. In contrast to the
employment of the bicriteria approximation algorithm for shallow-light arborescences
[8, 17], our algorithm uses the delay weights explicitly.

We also show NP hardness of the uniform cost-distance Steiner tree problem for
the special case V (G) = {r} ∪ T , c ≡ d : E(G) → {1, 2}. Demonstrating that the
hardness stems not only from the Steiner tree problem.

The bounded-ratio and uniform cost-distance Steiner tree problems have important
applications. We show how they arise as Lagrangean subproblems in a fast approxi-
mation algorithm [10] for computing (fractional) Steiner trees for all nets in a VLSI
netlist with mutual delay constraints minimizing the total length of all trees.

The remainder of this paper is organized as follows. In Section 2, we show that
the uniform cost-distance Steiner tree problem is NP-hard even if V (G) = T ∪ {r},

Improved Uniform Cost-Distance Steiner Trees 3

Fig. 1. graph construction used to reduce 3SAT to uniform cost-distance spanning tree

c : E(G)→ {1, 2}, and w(t) = w > 0 (t ∈ T). Then, in Section 3, we briefly summarize
how to obtain a 2.87-factor approximation algorithm from bicriteria algorithms for
shallow-light Steiner trees. Our main result, a (1 + β)-factor approximation algorithm
for the uniform cost-distance Steiner tree problem is presented in Section 4. Finally, a
significant application in chip design is given in Section 6, followed by Conclusions.

2 Hardness of the spanning tree case

The NP-hardness of the uniform cost-distance Steiner tree problem follows directly from
the NP-hardness of the ordinary Steiner tree problem, when setting all delay weights
to zero. Here, we show that the special case V (G) = {r} ∪ T and c : E(G)→ {1, 2} is
already NP-hard. Thus, the difficulty arises from the two-folded objective function
and not only from the Steiner tree problem.

Note that hardness of the buy-at-bulk problems can still stem from the Steiner
tree problem when all vertices are demand vertices, because demands can be chosen
as zero, leaving vertices unconnected. In contrast, in the cost-distance Steiner tree
problem all terminals have to be connected to r regardless of their delay weight.

Theorem 1. The cost-distance Steiner tree problem is NP-hard even if c : E(G)→
{1, 2}, d(e) = c(e) (e ∈ E(G)), and V (G) = {r}∪T.

Proof. We prove the statement by reduction from 3-SAT. Let φ = C1 ∧C2 ∧ . . . ∧Cm
be a 3-SAT formula on variables x1, x2, . . . , xn. We construct a graph G as follows:

V (G) := {C1, . . . , Cm, x1, . . . , xn, x̄1, . . . , x̄n, r}, and (2)

E(G) := {{r, xi}, {r, x̄i}, {xi, x̄i} : i = 1, . . . , n} ∪ {{Cj , α} : α is a literal in Cj} (3)

Edge costs are chosen as c({xi, x̄i}) = 1 for i ∈ {1, . . . , n}, and c(e) = 2 for all
other edges. The delay weights are chosen uniformly as w(Cj) = w (j ∈ {1, . . . ,m})
for an arbitrary constant w > 0 and zero for all other nodes. Here, any arbitrary
choice of w works as long as it is positive. Figure 1 shows exemplified how the root,
one pair of literals, and a clause are connected and the edge costs and weights are
chosen. We claim that φ is satisfiable, if and only if G has a spanning tree A with
objective value at most 3n+ 2m+ 4mw.

To prove the claim, assume first that we are given a satisfying truth assignment
for φ. We will construct a desired spanning tree A from the truth assignment. Add
all edges between a true literal and the root to E(A) and add all edges of length one.

4 A. Khazraei and S. Held

Finally, connect each clause node to one of its true literals in the truth assignment.
Then, the connection cost of the tree is 3n+ 2m. The path from each clause to the
root consists of an edge of length two to the literal and another edge of length two to
the root, so it has length four, resulting in the objective value of 3n+ 2m+ 4mw.

For the reverse direction, observe that a connection cost of 3n+ 2m is the cost
of a minimum spanning tree and, thus, the least possible connection cost. Also, the
distance of the clause nodes to the root in the graph is four, therefore the above
objective value is simultaneously minimum in both factors. Thus, a tree with this
value must be a minimum spanning tree and it selects all edges of length one. So at
most one literal per variable is adjacent to the root. The connected literals give us
a truth assignment. Now the spanning tree must also contain a shortest r-Ci-path
for all i = 1, . . . ,m. Consequently, each clause node must be connected to a literal
adjacent to the root, i.e. a true literal. This means each clause evaluates to true and φ
is satisfiable.

By Theorem 1, the uniform cost-distance Steiner tree problem in graphs is NP-hard
even when restricting to the case where T = V (G) \ {r} rendering the Steiner tree to
become a spanning tree. We therefore turn our attention to approximation algorithms.

3 Approximation factors from Shallow-Light Steiner Trees

Previous constant-factor approximation algorithms for the uniform cost-distance
Steiner tree problem are based on bicriteria approximation algorithms for shallow-light
Steiner trees. For a rooted Steiner tree, being shallow refers to bounding path lengths
in the tree between terminals and the root, and being light refers to bounding the
sum of edge lengths of the tree. Instead of delay weights w, they are given a delay
bound d̄(t) for every t ∈ T . Sometimes this is a uniform deadline d̄(t) = ∆ ∈ R≥0 [4],
or the distance from the root d̄(t) = dist(G,c)(r, t) [12].

These algorithms [4, 12, 9, 8, 3] take as input an initial approximate minimum
length Steiner tree A0 and a parameter δ > 0. Then, they proceed roughly as follows.

They traverse A0 along an Eulerian walk in the directed graph
↔
A0 which has each edge

of A0 replaced by two opposite arcs, starting at r and build an auxiliary graph H that
is initialized with A0. Whenever they enter a terminal t ∈ T for which the current
r-t-distance in H w.r.t. d is greater than (1 + δ)d̄(t), they add a shortest path in (G, d)
to H. Finally, they return a shortest path tree in H. The length of the resulting tree
is at most

(
1 + 2

δ

)
times the length of the input tree, and it violates the delay bounds

by at most a factor (1 + δ) (see [8] for more details).

We can employ a simple lower bound for the minimum total cost of a cost-
distance Steiner tree that is also valid in the non-uniform case. The connection cost is
minimized for a Steiner minimum tree TSMT in (G, c) and the delay cost is minimized
for a shortest path tree TSP in (G, d). Thus, with CSMT :=

∑
e∈E(TSMT) c(e) and

DSP :=
∑

t∈T wtdist(G,d)(r, t) a lower bound for the objective value is

CSMT +DSP . (4)

As proposed but not explicitly conducted in [14], we can use a bicriteria algorithm
to derive a constant factor approximation for the uniform cost-distance problem. The
bicriteria algorithm returns a solution with total cost (1+ 2

δ)βCSMT +(1+δ)DSP . Now
choose δ such that (1 + δ) = (1 + 2

δ)β (see also [8, 17]), equalizing the approximation
factors for the delay and for the total length. Using a spanning tree for A0 [12], where

Improved Uniform Cost-Distance Steiner Trees 5

Algorithm 1: Cost-Distance Steiner Tree Approximation
Input :A graph G, c, d : E(G)→ R≥0, T ⊂ V (G), r ∈ V (G), a weight threshold µ > 0.
Output :A Steiner arborescence on the terminal set T rooted at r.

1 A0 := β-approximate minimum cost Steiner arborescence for T ∪ {r} in (
←→
G , c) rooted at r,

satisfying δ+(t) = ∅ for all t ∈ T , |δ+A0
(v)| = 2 for all v ∈ V (A0) \ T .

2 H := A0; T = ∅.
3 for v ∈ V (A0) in reverse topological order do
4 Let Hv be the sub-arborescence of H rooted at v.
5 if w(V (Hv) ∩ T) > µ
6 T ′ := V (Hv) ∩ T ; A′ := Hv.
7 E(H) := E(H) \

(
(E(A′) ∪ δ−(v)

)
.

8 T = T ∪ {T ′}.

9 for T ′ ∈ T do
10 Let A′ be the Steiner tree connecting T ′ according to Step 6 or (T ′, ∅) if |T ′| = 1.
11 Select a “port” vertex t ∈ T ′ and a shortest r-t-path P in (G, d) such that the

arborescence A′′ rooted at r, which results from re-orienting P +A′, minimizes∑
e∈E(A′′)

c(e) +
∑
t∈T ′

w(t) · d(E(A′′[r,t])). (5)

E(H) := E(H) ∪ E(A′′).

12 Return shortest path arborescence in H w.r.t. d rooted at r and covering T .

β = 2, this yields an approximation factor of 3.57. With the currently best known
approximation factor β = ln(4) + ε [2], this gives an approximation factor of 2.87.

Note that the bicriteria algorithm does not take the actual delay weights w into
account. It returns the same solutions for w ≡ 0 or w ↗∞, for which the optimum
solutions would be TSMT or approach TSP .

4 Improved Approximation for the
Uniform Cost-Distance Steiner Tree Problem

We show how to improve the approximation factor for the uniform cost-distance
Steiner tree problem by employing the delay weights algorithmically.

Algorithm 1 shows the overall algorithm, which we will now describe in detail. The
solution to the cost-distance Steiner tree problem is a tree. Our algorithm formally

computes a Steiner arborescence in
←→
G rooted at r, where

←→
G is the directed graph G

with each edge replaced by two oppositely oriented arcs of cost c(←−e) := c(−→e) := c(e)
and delay d(←−e) := d(−→e) := d(e) for e ∈ E(G). It can easily be turned into the desired
Steiner tree by neglecting its orientation. Note that the description of the algorithm
uses separate functions for cost and delay that we use later for the bounded-ratio case
in Section 5. However, the analysis of the uniform case in this section assumes c ≡ d.

We partition the terminal sets into clusters of bounded delay weight based on a
threshold parameter µ > 0. To this end, we first compute a light Steiner tree for T ∪{r}
in (G, c) by a β-factor approximation algorithm and turn it into an arborescence A0

rooted at r. By inserting dummy vertices and edges of zero cost and zero delay, as well
as short-cutting Steiner vertices with out-degree one, we can assume that A0 is a full
binary tree, i.e. |δ+A0

(v)| = 2 (v ∈ V (A0) \ T), with leave set T . Here, we use δ+A0
(v)

and δ−A0
(v) to denote the set of edges leaving vertex v and the set of edges entering

vertex v in the graph A0, respectively. Note that formally A0 is not a subgraph of
←→
G

any more.

6 A. Khazraei and S. Held

Fig. 2. Splitting off sub-arborescences of aggregate delay weight higher than the threshold µ, here
with µ = 1. Traversing in reverse topological order we remove the red edge into a sub-arborescence
with delay weight 1.1 > µ.

Then, we traverse the vertices of A0 in reverse topological order. Whenever the
delay weight of the terminals spanned by the sub-arborescence Hv rooted at the
currently visited vertex v ∈ V (A0) is larger than µ, we split off the sub-arborescence
rooted at v as in Figure 2. The sub-arborescences are stored for later reuse.

This clustering results in a partition of T = Tr∪̇T1∪̇ . . . ∪̇Tk = Tr∪̇
⋃̇
T ′∈T T

′ and
arborescences A1, . . . , Ak, where Ai connects the terminals in Ti (i = 1, . . . , k) rooted
at some vertex ri where the sub-arborescence was cut off such as in Figure 3. i.e., ri
corresponds to some vertex v and Ti to some set T ′ according to Step 6. Tr consists of
the terminals that are still residing in the component Hr when the for-loop in Step 3
terminates.

The following proposition provides a key characteristic of the clusters.

Proposition 1. Each cluster T ′ ∈ T generated in Step 6 is either a heavy singleton
{t} (t ∈ T) with delay weight w(t) > µ or a cluster T ′ ∈ T with delay weight
µ < w(T ′) ≤ 2µ.

Proof. If a visited vertex is not a heavy singleton, then its at most two sub-arborescences
have weight at most µ. Otherwise, they would have been split off. In turn, the entering
edge is removed only if w(T ′) > µ.

After the clusters are determined, we connect each cluster T ′ ∈ T to the root r in
Step 11. To this end we consider each t ∈ T ′ as a possible “port” vertex for which
we select an r-t-path P minimizing d(E(P)). The other vertices in T ′ are connected
through the initial sub-arborescence A′ after re-orienting arcs if necessary. For each
cluster, we pick a port vertex minimizing the total cost (5) for the cluster. Finally, we
return a shortest path tree in H w.r.t. the edge delays rooted in r and containing all
terminals T .

Next, we analyze the cost caused by a cluster after choosing the terminal and
shortest path through which we connect it in Step 11.

Lemma 1. Let T ′ ∈ T , and let A′ be the sub-arborescence stored with T ′. In the
uniform case c ≡ d, the terminal t ∈ T ′ and the path P chosen in Step 11 provide a
shortest path tree in P ∪A′ that has a total cost of at most(

1 +
1

µ

)∑
t∈T ′

w(t)dist(G,d)(r, t) +
(
1 + µ

)
c(E(A′)).

Proof. If T ′ is a singleton {t}, the statement becomes evident since c(E(A′)) = 0,
w(t)
µ > 1 and c ≡ d. Otherwise, let us randomly choose a “port” terminal t ∈ T ′

Improved Uniform Cost-Distance Steiner Trees 7

Fig. 3. The clusters at the end of the splitting-off process with µ = 1.

together with a shortest r-t-path P in (G, d). We will show that the expected value
of this choice satisfies the desired cost bound. Thus, the deterministic best choice of
terminal and path in the algorithm must also satisfy this bound.

Let W := w(T ′). The terminal t ∈ T ′ will be selected with probability pt propor-
tional to its delay weight:

pt :=
w(t)

W
.

The expected value of the connection cost can be upper bounded by the expected
value of c(E(P)) plus c(E(A′)). The expected value of the delay cost can be upper
bounded by the expected value of W ·d(E(P)) plus the expected delay cost for serving
T ′ \ {t} through A′.

The delay cost on P has the expected value

E (W · d(E(P))) = W
∑
t∈T ′

pt · dist(G,d)(r, t) =
∑
t∈T ′

w(t) · dist(G,d)(r, t).

This is the delay cost of a shortest path tree connecting T ′ to the root, i.e. the minimum
possible delay cost for T ′.

For the delay cost through A′, consider an edge (u, v) ∈ E(A′) in the sub-
arborescence A′ before re-orienting it. The edge separates the sub-arborescence A′v
of A′ − (u, v) containing v from the rest of A′. We compute the expected delay cost
contribution of (u, v). It is the product of d(u, v) and the delay weight served through
(u, v) or (v, u) if it is re-oriented. Let T ′v := V (A′v) ∩ T ′ and Wv := w(T ′v).

With probability Wv
W one of the terminals in T ′v is chosen by the random selection

as the port t. In this case, the delay weight served by (u, v) equals the sum of the
weights of all other terminals, W −Wv. Otherwise, the port is chosen from T ′ \T ′v and
the delay weight served by (u, v) (after reverting it) is Wv (see Figure 4). Therefore,
the expected delay weight served by (u, v) is

Wv

W
· (W −Wv) +

W −Wv

W
·Wv =

2Wv(W −Wv)

W
≤ W

2
≤ µ,

where the last inequality follows from Proposition 1. This means that the delay cost
in A′ has expected value at most µ

∑
e∈E(A′) d(e) = µd(E(A′)).

8 A. Khazraei and S. Held

Fig. 4. The delay weight on the edge (u, v) is Wv with probability (Wv/W) if the port terminal is
chosen from A′v. It is W −Wv with probability (W −Wv)/W if the port is chosen from A′ \A′v.

The connection cost of P has expected value

E (c(E(P))) =
∑
t∈T ′

w(t)

W
d(E(Pt)) =

∑
t∈T ′

w(t)

W
dist(G,d)(r, t) ≤

1

µ

∑
t∈T ′

w(t)dist(G,d)(r, t),

where Pt denotes a shortest r-t-path in (G, d), and we are using that W ≥ µ and
c(E(P) = d(E(P)). As the expected cost of serving T ′ through a randomly chosen t
is at most∑

t∈T ′
w(t)dist(G,d)(r, t) + µc(E(A′)) +

1

µ

∑
t∈T ′

w(t)dist(G,d)(r, t) + c(E(A′))

=
(
1 +

1

µ

)∑
t∈T ′

w(t)dist(G,d)(r, t) +
(
1 + µ

)
c(E(A′)),

this cannot be exceeded by the cheapest choice for t in Step 11.

Theorem 2. Given an instance (G, c ≡ d,w) of the uniform cost-distance Steiner
tree problem, a Steiner tree A, whose objective value (1) is at most

(1 + µ)βCSMT + (1 +
1

µ
)DSP ,

where CSMT :=
∑

e∈E(TSMT) c(e) and DSP :=
∑

t∈T wtdist(G,d)(r, t), can be computed

in O(Λ + |T |2 + m + n log n) time. Here, Λ is the running time for computing a
β-approximate minimum Steiner tree for T ∪ {r}, n = |V (G)|, and m = |E(G)|.

Proof. We run Algorithm 1. The resulting objective value is given by the cost of the
root component Hr, just before the for loop in Step 9 starts adding clusters in T , plus
the cost of all added clusters. As the total delay weight in any sub-arborescence of Hr−r
is at most µ, the total cost of Hr is at most µd(E(Hr)) + c(E(Hr)) = (µ+ 1)c(E(Hr)).

As we use edges from the initial approximate minimum Steiner tree at most once
in either E(Hr) or one of the edge sets E(A′) of the stored sub-arborescences, we can
simply add the above cost of Hr and the cluster costs according to Lemma 1. This
gives the desired solution cost of at most

(1 + µ)βCSMT + (1 +
1

µ
)DSP .

Improved Uniform Cost-Distance Steiner Trees 9

The running time of the algorithm is given by the running time Λ + O(n) for
computing the β-approximate minimum Steiner tree and transforming it into the
arborescence A0 plus the running time for clustering and selecting the port terminal and
shortest path for all clusters. The clustering can be accomplished in time O(|E(A0)|) ≤
O(|T |).

Rerouting a cluster tentatively connects a cluster through a terminal in the
cluster. To this end we once compute a shortest path tree rooted at r covering all
terminals using Dijkstra’s algorithm with Fibonacci heaps in time O(m+ n log n) [5].
As the arborescence stored for the cluster has size O(|T |), the total runtime of all the
rerouting steps is O(|T |2 +m+ n log n). Thus, the overall running time is bounded by
O(Λ+ |T |2 +m+ n log n).

Corollary 1. The uniform cost-distance Steiner tree problem can be approximated in
polynomial time within a factor (1 + β), where β is the Steiner ratio.

Proof. Let OPT be the total cost of an optimum solution. Setting µ = 1
β yields a

solution with total cost at most

(1 + µ)βCSMT + (1 +
1

µ
)DSP = (1 + β)(CSMT +DSP) ≤ (1 + β)OPT.

Using [2] to compute A0 with β = ln(4) + ε ≤ 1.39 we get the following result.

Corollary 2. The uniform cost-distance Steiner tree problem can be approximated
within a factor 2.39 in polynomial time.

Many practical applications [10, 1, 3] require a faster running time than provided
by the Steiner tree approximation algorithm in [2]. We can lower the quality of the
initial Steiner arborescence to get the following result.

Corollary 3. Given an instance (G, c, d, w) of the uniform cost-distance Steiner tree
problem, a Steiner tree A, whose cost is at most 3 times the optimum cost can be
computed in O(|T |2 +m+ n log n), where n = |V (G)| and m = |E(G)|.

Proof. Compute A0 by a terminal spanning tree algorithm in time O(m+n log n) [13].
Thereby, β = 2 and the approximation factor is 3.

Algorithm 1 is similar to [7] for the single-sink buy-at-bulk problem with a single
pipe type (K = 1), we would like to point out a few key differences. Both start from
a light arborescence and split off sub-arborescences that are heavy w.r.t. the delay
weight and demand respectively. However, we reuse the initial sub-arborescence to
connect terminals within a cluster. To this end, we introduce a novel computation of
the expected delay cost across the edges of the stored sub-arborescences. In contrast,
new pipes between the initial root of the sub-arborescence and the port vertex are
inserted in [7]. Furthermore, our clustering enforces an upper bound of 2µ on the
delay weights (except for heavy singletons), which is crucial to obtain the desired
approximation factor.

10 A. Khazraei and S. Held

5 Bounded-Ratio Cost-Distance Steiner Trees

The approximation algorithms in Sections 3 and 4 for the uniform cost-distance
Steiner can be extended to the bounded-ratio cost-distance Steiner tree problem,
where θc(e) ≤ d(e) ≤ Θc(e) for two constants θ ≤ Θ. For the bicriteria algorithm
(and Algorithm 1), we compute the initial light Steiner tree w.r.t. (G, c), i.e. aiming
for minimum connection cost. Then, for the bicriteria algorithm in Sections 3, the
splitting into sub-instances is then conducted based on delays in (G, d).

Similarly, the choice of the port vertex t ∈ T ′ in Step 11 of Algorithm 1 is done
based on the combined cost function (4). With a β-approximate Steiner tree A0 and
a delay violation tolerance δ > 0, the bicriteria algorithm computes a solution of
objective value at most (

1 +
2

δ

Θ

θ

)
βCSMT + (1 + δ)DSP . (6)

For given CSMT and DSP , we can choose δ such that the ratio of the final cost (6) to

the trivial lower bound (4) is minimized. This leads to a choice of δ =
√

2βCSMT
DSP

Θ
θ

and to the approximation factor

DSP + βCSMT + 2
√

2βCSMTDSP
Θ
θ

DSP + CSMT
. (7)

It turns into an approximation factor of 1
2

(
β + 1 +

√
(β − 1)2 + 8βΘθ

)
, independent

of CSMT and DSP . The same value arises when choosing δ such that (1+ 2
δ
Θ
θ)β = 1+δ.

Similarly, following the proof from Section 4, Algorithm 1 achieves a solution of
cost at most

(1 + µΘ)βCSMT + (1 +
1

µθ
)DSP .

Setting µ = 1√
β
CSMT
DSP

Θ
θ

, results in an approximation factor of

DSP + βCSMT + 2
√
βCSMTDSP

Θ
θ

DSP + CSMT
,

which compared to (7) avoids a factor 2 under the square root. We can state the
following generalization of Theorem 2.

Theorem 3. Given an instance (G, c, d, w) of the bounded-ratio cost-distance Steiner

tree problem, a Steiner tree A, whose objective value (1) is at most
β+1+

√
(β−1)2+4βΘ

θ

2
times the optimum, can be computed in O(Λ+ |T |2 +m+ n log n) time, where Λ is
the running time for computing a β-approximate minimum Steiner tree for T ∪ {r},
n = |V (G)|, and m = |E(G)|.

For θ = Θ, it matches the previous ratio (1 + β).

6 Application: delay constrained Steiner netlists

We now present an interesting application of (uniform) cost-distance Steiner trees in
chip design. Here, Steiner trees need to be chosen for millions of interconnects subject

Improved Uniform Cost-Distance Steiner Trees 11

to mutual signal delay constraints. The graph G can be considered a (possibly 3-
dimensional) grid graph with holes. Holes arise from blockages that prevent interconnect
routing.

The Steiner tree instances and their mutual delay dependencies are defined through
a hypergraph D with V (D) ⊆ V (G), which is often called netlist. Vertices in V (D)
represent start and end points of signal paths or small logic gates such as two-way
And or Or functions. Edges E(D) represent interconnect nets. Each edge e ∈ E(D)
has a designated root re ∈ e (⊆ V (G)), while Te := e \ {re} is its sink set. This
implies an orientation of the hyperedges from the root to the sinks. A path is an
alternating sequence of vertices and hyperedges v1, e1, v2, e2, . . . , ek, vk+1 such that vi
is the root of ei and vi+1 is a sink of ei. As signal paths are intercepted by registers
where signal paths start and end, the hypergraph is acyclic, i.e. there are no cycles
v1, e1, v2, e2, . . . , ek, vk+1 = v1. Each vertex v ∈ V (D) has a fixed delay d(v) ∈ R≥0,
where d is extended from E(G) to d : E(G) ∪ V (D)→ R≥0.

Given a Steiner tree A ⊆ G connecting the root re of a hyperedge e ∈ E(D)
with its sinks Te, the delay from re to a sink v ∈ Te is defined as dA(re, v) :=
d(re) +

∑
f∈E(A[re,v])

d(f).

The delay-constrained Steiner netlist problem is to compute a Steiner tree Ae for
each e ∈ E(D), minimizing the total connection cost

∑
e∈E(D) c(E(Ae)) such that all

(maximal) paths v1, e1, v2, e2, . . . , ek, vk+1 of D satisfy

k∑
i=1

dAei (vi, vi+1) ≤ ∆,

where ∆ is the given cycle time of the chip.

Using vertex potentials a : V (D)→ R for longest paths, it is easy to see that the
path delay constraints can be represented in a compact form using |V (D)| variables
and 2|V (D)|+

∑
e∈E(D) |e| constraints:

a(v) ≥ 0 (v ∈ V (D) : δ−(v) = ∅)
a(v) ≤ ∆ (v ∈ V (D) : δ+(v) = ∅)

a(re) + dAe(re, v) ≤ a(v) (e ∈ E(D), v ∈ e \ {re}).
(8)

The delay-constrained Steiner netlist problem is a special case of the timing-
constrained global routing problem, where G is additionally equipped with edge
capacities u : E(G) → R≥0. Now, the Steiner trees also have to be packed w.r.t.
the edge capacities. Recently, a global resource sharing model for timing-constrained
global routing was proposed by [10]. It considers the feasibility problem for the
constraints (8), the global routing capacities, and a guessed upper bound on the total
wire length. In this model C := |V (D)|+ |E(D)| customers/variables consume from
R :=

∑
e∈E(D) |e| + |E(G)| + 1 resources/inequality constraints. The algorithm by

[16] efficiently approximates an optimum solution to the fractional relaxation via
Lagrangean relaxation and multiplicative-weight updates. The output is a convex
combination of Steiner trees for each e ∈ E(D). The fractionality arises as the average
of finitely many discrete solutions.

However, it requires an approximate oracle for the cost-distance Steiner tree
problem that occurs as a Lagrangean subproblem, where prices c : E(G) → R≥0,
penalizing routing congestion and the total tree length, and prices w : ∪e∈E(D)(e\re)→
R≥0, penalizing delays signal delays, are maintained by the resource sharing algorithm.
Details can be found in [16, 10]. In this general setting, [14] still provides the best

12 A. Khazraei and S. Held

known approximation factor O(log |T |), while only oracles for constantly bounded
terminal sizes or heuristics were presented by [10].

The special case of neglecting the packing aspect, i.e. u ≡ ∞, is still relevant.
Several recent practical algorithms for delay-bounded Steiner trees in chip design [1,
3] compute delay-constrained Steiner trees on a net-by-net basis without considering
mutual delay dependencies or routing congestion. We can improve over such approaches
by directly considering delay constraints on signal paths. In this special case, the
resource sharing algorithm [16, 10] maintains a single price penalizing the total length
of all trees and delay prices w : ∪e∈E(D)(e \ re) → R≥0 so that the required oracle
function corresponds to a uniform cost-distance Steiner tree problem with θc(e) = d(e)
(e ∈ E(G)) for some θ depending on the current resource price for the total length.
Using Theorem 2 as an oracle for [16, 10] yields the following results.

Theorem 4. Given ω > 0, we can compute a fractional solution to the delay-bounded
Steiner netlist problem that violates the path delay constraints by at most a factor
(1 + ω)2.39 and deviates from the length of an optimum solution by at most a factor
(1 + ω)2.39. The running time of the algorithm is

O
(
|E(D)|(m+ n log n) + (Λ+ |emax|n) logR

(
(C +R) log logR+ (C +R)ω−1

))
,

where m := |E(G)| and n := |V (G)|.

Proof. The approximation factor follows immediately from Theorem 8 in [16] and
Theorem 2.

The resource sharing algorithm makes O
(
logR

(
(C +R) log logR+ (C +R)ω−1

))
calls to the oracle. For each hyperedge e ∈ E(D), the shortest path trees w.r.t. (G, c)
needs to be computed only once in the beginning so that the running time (taking
O(|E(D)|(m+ n log n)) time in total) per oracle call is only (Λ+ |emax|n).

Note that the number of oracle calls is near-linear in the instance size, leading
to a fast algorithm in practice. While the solution is only fractional, it can be
discretized using randomized rounding as in [16]. The models and algorithms in [16,
10] constitute state-of-the-art algorithms for global routing on industrial instances.
Thus, our improved approximation ratio for uniform cost-distance Steiner trees is of
theoretical relevance and likewise also of practical interest.

As modern metal stacks exhibit routing layers with different metal widths and
spacings, it would be reasonable to have different cost and delay parameters on different
layers of the 3d grid graph G. As the number of layers is typically bounded by a small
constant 10-16, the oracle to solve the Lagrangean subproblem would correspond
to the bounded-ratio cost-distance Steiner tree problem, for which Algorithm 1 also
provides a constant approximation factor.

7 Conclusion

We presented an improved approximation factor (1 + β) for the uniform cost-distance
Steiner tree problem, which for β = ln(4) + ε [2] results in a factor of 2.39. The best
previous factor based on bicriteria algorithms for shallow-light Steiner arborescences
was 2.87. We achieve this by using delay weights explicitly.

The practical importance of the bounded-ratio and uniform cost-distance Steiner
tree problems is demonstrated applications from chip design, where these problems
occur as Lagrangean subproblems. In the application Steiner trees for all nets of
minimum total length have to be computed subject to mutual delay dependencies.

Improved Uniform Cost-Distance Steiner Trees 13

References

1. C.J. Alpert, W.K. Chow, K. Han, A.B. Kahng, Z. Li, D. Liu, and S. Venkatesh, Prim-Dijkstra
Revisited: Achieving Superior Timing-driven Routing Trees. International Symposium on Physical
Design (ISPD’18), 10–17, 2018.

2. J. Byrka, F. Grandoni, T. Rothvoß, and L. Sanità, Steiner tree approximation via iterative
randomized rounding. Journal of the ACM 60, Article 6, 2013.

3. G. Chen and E.F.Y. Young, SALT: Provably Good Routing Topology by a Novel Steiner Shallow-
Light Tree Algorithm IEEE Transactions on Computer Aided Design of Integrated Circuits and
Systems, early online access, 2019.

4. J. Cong, A.B. Kahng, G. Robins, M. Sarrafzadeh, and C.K. Wong, Provably good performance-
driven global routing. IEEE Transactions on Computer Aided Design of Integrated Circuits and
Systems 11 (6), 739–752, 1992.

5. M.L. Fredman and R.E. Tarjan, Fibonacci heaps and their uses in improved network optimization
problems. Journal of the ACM 34, 596–615, 1987.

6. F. Grandoni and T. Rothvoß, Network design via core detouring for problems without a core.
International Colloquium on Automata, Languages, and Programming (ICALP’10), 490–502, 2010.

7. S. Guha, A. Meyerson, and K. Mungala, A Constant Factor Approximation for the Single Sink
Edge Installation Problem., SIAM Journal on Computing 38 (6), 2426–2442, 2009.

8. L. Guo, N. Zou, and Y. Li, Approximating the Shallow-Light Steiner Tree Problem When Cost and
Delay are Linearly Dependent., Symposium on Parallel Architectures, Algorithms and Programming
(PAAP’14), 99–103, 2014.

9. S. Held and D. Rotter, Shallow-Light Steiner Arborescences with Vertex Delays. Conference on
Integer Programming and Combinatorial Optimization (IPCO’13), 229–241, 2013.

10. S. Held, D. Müller, D. Rotter, R. Scheifele, V. Traub, and J. Vygen, Global Routing with Timing
Constraints. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
37(2), 406–419, 2018.

11. R. Jothi and B. Raghavachari, Improved approximation algorithms for the single-sink buy-at-bulk
network design problems. Journal of Discrete Algorithms 7(2), 249–55, 2009.

12. S. Khuller, B. Raghavachari, N. Young, Balancing Minimum Spanning and Shortest Path Trees.
Algorithmica 14(4), 305–321, 1995.

13. K. Mehlhorn, A faster approximation algorithm for the Steiner problem in graphs. Information
Processing Letters 27, 125–128, 1988.

14. A. Meyerson, K. Munagala, and S. Plotkin, Cost-distance: Two metric network design., SIAM
Journal on Computing 38(4), 1648–1659, 2008.

15. Julia Chuzhoy, Anupam Gupta, Joseph (Seffi) Naor, Amitabh Sinha On the Approximability of
Some Network Design Problems

16. D. Müller, K. Radke, and J. Vygen, Faster min-max resource sharing in theory and practice.
Mathematical Programming Computation 3, 1–35, 2011.

17. D. Rotter, Timing-Constrained Global Routing with Buffered Steiner Trees., Dissertation thesis,
University of Bonn, 2017.

18. K. Talwar, The single-sink buy-at-bulk LP has constant integrality gap, International Conference
on Integer Programming and Combinatorial Optimization (IPCO’02), 475–486, 2002.

