Winter term 2021/22 Prof. Dr. B. Korte Dr. U. Brenner

Combinatorics, Graphs, Matroids Assignment Sheet 1

- 1. Let \mathcal{S} be a finite family of finite (not necessarily pairwise disjoint) sets. A set T is called transversal of \mathcal{S} if there is a bijection $\Phi: T \to \mathcal{S}$ with $t \in \Phi(t)$ for all $t \in T$. Assume that \mathcal{S} contains at least one transversal. Prove that the set of all transversals of \mathcal{S} is the family of bases of a matroid (the so-called $transversal\ matroid$). (4 points)
- 2. Let G be a graph, and let \mathcal{F} be the family of all sets $X \subseteq V(G)$ such that a matching with maximum cardinality exists that does not cover any node in X. Show that $(V(G), \mathcal{F})$ is a matroid. (4 points)
- 3. Let (E, \mathcal{F}_1) and (E, \mathcal{F}_2) be two matroids and $k \in \mathbb{N}$. Which of the following set systems are necessarily matroids? Prove the correctness of your answers.
 - (a) $(E, \mathcal{F}_1 \cup \mathcal{F}_2)$
 - (b) $(E, \mathcal{F}_1 \cap \mathcal{F}_2)$

(c)
$$(E, \mathcal{F}_1 \cap \{X \subseteq E \mid |X| \le k\})$$
 (2+2+2 points)

4. Let (E, \mathcal{F}) be a matroid with rank function r. Prove or disprove the following statement:

 (E, \mathcal{F}) is uniform (i.e. there is a k such that $\mathcal{F} = \{F \subseteq E \mid |F| \leq k\}$) if and only if there is no circuit with less than r(E) + 1 elements. (2 points)

Du date: Thursday, October 21, 2021, before the lecture (in the lecture hall)