Winter term 2021/22 Prof. Dr. B. Korte Dr. U. Brenner

Combinatorics, Graphs, Matroids Assignment Sheet 2

- 1. Let E be a finite set and $\mathcal{B} \subseteq 2^E$. Show that \mathcal{B} is the set of bases of a matroid if and only if the following three conditions are satisfied:
 - (B1) $\mathcal{B} \neq \emptyset$
 - (B2)' For $B_1, B_2 \in \mathcal{B}$ and $x \in B_1$, there is an element $y \in B_2$ such that $(B_1 \setminus \{x\}) \cup \{y\} \in \mathcal{B}$.
 - (B3) For $B_1, B_2 \in \mathcal{B}$, we have: $B_1 \subseteq B_2 \Rightarrow B_1 = B_2$. (3 points)
- 2. Let (E, \mathcal{F}) be a matroid with rank function r, and let k be a positive integer. Let $r_k: 2^E \to \mathbb{Z}_+$ be defined by $r_k(X) = \min\{k, r(X)\}$. Show that r_k is the rank function of a matroid. (3 points)
- 3. Let (E, \mathcal{F}) be a matroid with closure operator $\sigma: 2^E \to 2^E$. Let $X, Y \subseteq E$ be sets with $\sigma(X) = X$ and $\sigma(Y) = Y$. Prove or disprove the following statements:
 - (a) These conditions imply $\sigma(X \cap Y) = X \cap Y$.
 - (b) These conditions imply $\sigma(X \cup Y) = X \cup Y$. (2+2 points)
- 4. Let (E, \mathcal{F}) be a matroid, and let \mathcal{C} be the set of circuits of (E, \mathcal{F}) . Moreover, let $x \in E$. Consider the following sets \mathcal{C}_i . Either give a proof that, under theses conditions, C_i is the set of circuits of a matroid or show by an example that this is not necessarily the case.
 - (a) $C_1 = \{C \in 2^E \mid C \in \mathcal{C} \text{ and } x \notin C\}$
 - (b) $C_2 = \{C \in 2^E \mid (C \cup \{x\}) \in C\}$
 - (c) $C_3 = \{C \in 2^E \mid x \in C \text{ and } (C \setminus \{x\}) \in \mathcal{C}\}$ (2+2+2 points)

Du date: Thursday, October 28, 2021, before the lecture (in the lecture hall)