Winter term 2021/22 Prof. Dr. B. Korte Dr. U. Brenner

Combinatorics, Graphs, Matroids Assignment Sheet 4

- 1. Prove or disprove the following statement: A matroid is a transversal matroid (see exercise 1 of assignment sheet 1) if and only if it is the union of matroids whose bases each have cardinality 1. (2 points)
- 2. Let (E, \mathcal{F}_1) and (E, \mathcal{F}_2) be two matroids. And let X be a maximum partitionable set with respect to (E, \mathcal{F}_1) and (E, \mathcal{F}_2^*) , so in particular we have $X = X_1 \dot{\cup} X_2$ with $X_1 \in \mathcal{F}_1$ and $X_2 \in \mathcal{F}_2^*$. Moreover, let $B_2^* \supseteq X_2$ be a basis of \mathcal{F}_2^* . Show that $X \setminus B_2^*$ is a maximum-cardinality set in $\mathcal{F}_1 \cap \mathcal{F}_2$.
- 3. Let (E, \mathcal{F}) be a matroid with rank function r. Show the following statements:
 - (a) (E, \mathcal{F}) has k pairwise disjoint bases if and only if $kr(A) + |E \setminus A| \ge kr(E)$ for all $A \subseteq E$.
 - (b) In (E, \mathcal{F}) , there are k independent sets whose union is E if and only if $kr(A) \ge |A|$ for all $A \subseteq E$. (3+3 points)
- 4. Consider the following problem: Given a simple undirected connected graph G with edge weights $c: E(G) \to \mathbb{N}$, find an edge set $F \subseteq E(G)$ with maximum weight such that $(V(G), E(G) \setminus F)$ is connected and (V(G), F) does not contain a circuit. Show that the is an algorithm for this problem whose running time is polynomial in the input size. (3 points)

Du date: Thursday, November 11, 2021, before the lecture (in the lecture hall)