Winter term 2021/22 Prof. Dr. B. Korte Dr. U. Brenner

Combinatorics, Graphs, Matroids Assignment Sheet 5

Preliminary remark: In this exercise sheet, you can use the statement that an undirected graph is planar if and only if it contains neither the K_5 nor the $K_{3,3}$ as a minor, even if the proof of this statement has not been completed in the lecture.

- 1. Let G be a directed graph such that for all $v, w \in V(G)$ exactly on v-w-path exists in G. Show that G Eulerian. (3 points)
- 2. What is the smallest n such that there exists a nonplanar simple graph G with n nodes whose complement \bar{G} is also nonplanar? The graph \bar{G} is defined by $V(\bar{G}) = V(G)$ and by the property that two nodes in \bar{G} are connected by an edge if and only if they are not connected in G. (4 points)
- 3. Given a graph G and an edge $e = \{v, w\} \in E(G)$ we say that H results from G by subdividing e if $V(H) = V(G) \dot{\cup} \{x\}$ and $E(H) = (E(G) \backslash \{e\}) \cup \{\{v, x\}, \{x, w\}\}$. A graph resulting from G by successively subdividing edges is called a subdivision of G. Show the following statements:
 - (a) If H contains a subdivision of G then G is a minor of H. The converse is not true.
 - (b) If a graph contain a $K_{3,3}$ or K_5 minor then it also contains a subdivision of $K_{3,3}$ or of K_5 . (2+3 points)

Remark: Together the two statements show that a graph is planar if and only if no subgraph is a subdivision of $K_{3,3}$ or K_5 .

- 4. Show that the following statements are equivalent:
 - (a) For every infinite sequence $G_1, G_2 \dots$ of graphs, there are two indices i < j such that G_i is a minor of G_j .
 - (b) Let \mathcal{G} be a class of graphs that is closed under computing minors i.e. for each $G \in \mathcal{G}$ every minor of G is contained in \mathcal{G} , too. Then there is a finite set \mathcal{X} of graphs such that \mathcal{G} consist of exactly the graphs not containing an element of \mathcal{X} as a minor. (4 points)

Remark: The statements are not only equivalent but also true. Choose for example the set of planar graphs as \mathcal{G} . This set is closed under computing minors and the set \mathcal{X} can consist of $K_{3,3}$ and K_5 .

Du date: Thursday, November 18, 2021, before the lecture (in the lecture hall)