Wintersemester 2025/26 Prof. Dr. S. Held Dr. U. Brenner

Einführung in die Diskrete Mathematik 1. Übung

- 1. Wie viele Kanten kann ein einfacher unzusammenhängender ungerichteter Graph mit n Knoten höchstens haben? (3 Punkte)
- 2. Es sei S eine Menge mit n Elementen und $\mathcal{A} = \{A_1, \ldots, A_n\}$ eine Menge von paarweise verschiedenen Teilmengen von S. Zeigen Sie, dass es dann ein $x \in S$ geben muss, für das auch die Mengen $A_i \cup \{x\}$ $(i = 1, \ldots, n)$ paarweise verschieden sind. (5 Punkte)

Hinweis: Betrachten Sie einen ungerichteten Graphen G mit Knotenmenge \mathcal{A} , in dem für jede Kante $\{A_i, A_i\}$ gilt: $|(A_i \setminus A_i) \cup (A_i \setminus A_i)| = 1$.

- 3. Zeigen Sie: Für einen Vektor (d_1, \ldots, d_n) mit positiven ganzen Zahlen als Einträgen gibt es genau dann einen Baum T mit Knotenmenge $\{v_1, \ldots, v_n\}$, so dass für jedes $i \in \{1, \ldots, n\}$ der Knoten v_i in T Grad d_i hat, wenn $\sum_{i=1}^n d_i = 2n 2$ gilt. (4 Punkte)
- 4. Sei G ein Branching mit n Knoten und m Kanten. Wie viele Möglichkeiten gibt es, ein geordnetes Paar von zwei verschiedenen Knoten v und w von G auszuwählen, so dass der um eine Kante ergänzte Graph $(V(G), E(G) \dot{\cup} \{(v, w)\})$ ein Branching ist? (4 Punkte)
- 5. Sei G = (V, E) ein stark zusammenhängender gerichteter Graph mit n Knoten. Zeigen Sie, dass G dann einen stark zusammenhängenden Teilgraphen G' = (V, E') mit $|E'| \le 2n 2$ enthält. (4 Punkte)

Sie finden den aktuellen Übungszettel stets auf der Übungs-Seite der Vorlesung: http://www.or.uni-bonn.de/lectures/ws25/edm_uebung_ws25.html

Abgabe: Donnerstag, den 23.10.2025, 16:00 Uhr über die eCampus-Seite der eigenen Übungsgruppe.

https://ecampus.uni-bonn.de/goto_ecampus_crs_3864991.html